Abstract

Saturation spectroscopy with resonance-ionization mass spectrometry detection was used to obtain Doppler-free spectra of the D23/2°D23/2 transition of lutetium at 22 125 cm−1 in unenriched, naturally occurring samples. Analysis of the spectra yielded the hyperf ine coupling constants of 175Lu and 176Lu for this transition. Applications to isotopically selective photoionization and large-ratio isotopic analysis are discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Miller, R. Engleman, R. A. Keller, “Resonance-ionization mass spectrometry for high-resolution mass-resolved spectra of rare isotopes,” J. Opt. Soc. Am. B 2, 1503 (1985).
    [CrossRef]
  2. B. D. Cannon, B. A. Bushaw, T. J. Whitaker, “Continuous-wave double-resonance ionization mass spectrometry of barium,” J. Opt. Soc. Am. B 2, 1542 (1985).
    [CrossRef]
  3. B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.
  4. R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).
  5. W. M. Fairbank, “Photon burst mass spectrometry,” Nucl. Instrum. Methods B29, 407 (1987).
  6. W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.
  7. R. D. LaBelle, W. M. Fairbank, R. A. Keller, “Photon burst detection of accelerated Mg+,” Phys. Rev. A (to be published).
  8. T. J. Whitaker, “Isotopically selective laser measurements: high-resolution methods provide isotope selectivity and ultrasensitive detection of atomic species,” Lasers Appl. 5(8), 67 (1986).
  9. C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.
  10. B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.
  11. N. S. Nogar, S. W. Downey, C. M. Miller, “Analytical capabilities of RIMS: absolute sensitivity and isotope analysis,” in Resonance Ionization Spectroscopy 1984, G. S. Hurst, M. G. Payne, eds. (Institute of Physics, Bristol, UK, 1984),p. 91.
  12. B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.
  13. D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.
  14. See, for example, W. Demtroder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer-Verlag, New York, 1988), and references therein.
  15. T. P. Duffey, D. Kammen, A. L. Schawlow, S. Svanberg, H.-R. Xia, G.-G. Xiao, G.-Y. Yan, “Laser spectroscopy using beam-overlap modulation,” Opt. Lett. 10, 597 (1985).
    [CrossRef] [PubMed]
  16. M. G. Inghram, W. A. Chupka, “Surface ionization source using multiple filaments,” Rev. Sci. Instrum. 24, 518 (1953).
    [CrossRef]
  17. W. R. Shields, ed., “Analytical mass spectrometry section: instrumentation and procedures for isotopic analysis,” Natl. Bur. Stand. (U.S.) Tech. Note 277 (1966).
  18. M. L. Parsons, B. A. Palmer, “Fundamental data to be obtained with the Los Alamos Fourier transform spectrometer,” Spectrochim. Acta Part B 43B, 75 (1988).
  19. R. Engleman, R. A. Keller, C. M. Miller, “Effect of optical saturation on hyperfine intensities in optogalvanic spectroscopy,” J. Opt. Soc. Am. B 2, 897 (1985).
    [CrossRef]
  20. T. A. Manteuffel, “An interval analysis approach to rank determination in linear least squares problems,” Sandia National Laboratories Rep. SAND80-0655 (Sandia National Laboratories, Albuquerque, N.M., 1980).
  21. H. Figger, G. Wolber, “Precision measurement of the hyperfine structure of Lu175with the atomic beam magnetic resonance method,” Z. Phys. 264, 95 (1973).
    [CrossRef]
  22. D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
    [CrossRef]

1988 (1)

M. L. Parsons, B. A. Palmer, “Fundamental data to be obtained with the Los Alamos Fourier transform spectrometer,” Spectrochim. Acta Part B 43B, 75 (1988).

1987 (1)

W. M. Fairbank, “Photon burst mass spectrometry,” Nucl. Instrum. Methods B29, 407 (1987).

1986 (1)

T. J. Whitaker, “Isotopically selective laser measurements: high-resolution methods provide isotope selectivity and ultrasensitive detection of atomic species,” Lasers Appl. 5(8), 67 (1986).

1985 (4)

1981 (1)

R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).

1980 (1)

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

1973 (1)

H. Figger, G. Wolber, “Precision measurement of the hyperfine structure of Lu175with the atomic beam magnetic resonance method,” Z. Phys. 264, 95 (1973).
[CrossRef]

1966 (1)

W. R. Shields, ed., “Analytical mass spectrometry section: instrumentation and procedures for isotopic analysis,” Natl. Bur. Stand. (U.S.) Tech. Note 277 (1966).

1953 (1)

M. G. Inghram, W. A. Chupka, “Surface ionization source using multiple filaments,” Rev. Sci. Instrum. 24, 518 (1953).
[CrossRef]

Aepfelbach, G.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

Bomse, D. S.

R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).

Bushaw, B. A.

Cannon, B. D.

Chupka, W. A.

M. G. Inghram, W. A. Chupka, “Surface ionization source using multiple filaments,” Rev. Sci. Instrum. 24, 518 (1953).
[CrossRef]

Cremers, D. A.

R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).

Demtroder, W.

See, for example, W. Demtroder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer-Verlag, New York, 1988), and references therein.

Downey, S. W.

N. S. Nogar, S. W. Downey, C. M. Miller, “Analytical capabilities of RIMS: absolute sensitivity and isotope analysis,” in Resonance Ionization Spectroscopy 1984, G. S. Hurst, M. G. Payne, eds. (Institute of Physics, Bristol, UK, 1984),p. 91.

Duffey, T. P.

Engleman, R.

Fairbank, W. M.

W. M. Fairbank, “Photon burst mass spectrometry,” Nucl. Instrum. Methods B29, 407 (1987).

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

R. D. LaBelle, W. M. Fairbank, R. A. Keller, “Photon burst detection of accelerated Mg+,” Phys. Rev. A (to be published).

Fearey, B. L.

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.

D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.

Figger, H.

H. Figger, G. Wolber, “Precision measurement of the hyperfine structure of Lu175with the atomic beam magnetic resonance method,” Z. Phys. 264, 95 (1973).
[CrossRef]

Inghram, M. G.

M. G. Inghram, W. A. Chupka, “Surface ionization source using multiple filaments,” Rev. Sci. Instrum. 24, 518 (1953).
[CrossRef]

Kammen, D.

Keller, R. A.

R. Engleman, R. A. Keller, C. M. Miller, “Effect of optical saturation on hyperfine intensities in optogalvanic spectroscopy,” J. Opt. Soc. Am. B 2, 897 (1985).
[CrossRef]

C. M. Miller, R. Engleman, R. A. Keller, “Resonance-ionization mass spectrometry for high-resolution mass-resolved spectra of rare isotopes,” J. Opt. Soc. Am. B 2, 1503 (1985).
[CrossRef]

R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).

R. D. LaBelle, W. M. Fairbank, R. A. Keller, “Photon burst detection of accelerated Mg+,” Phys. Rev. A (to be published).

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.

D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.

Kuhnert, A.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

LaBelle, R. D.

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

R. D. LaBelle, W. M. Fairbank, R. A. Keller, “Photon burst detection of accelerated Mg+,” Phys. Rev. A (to be published).

Manteuffel, T. A.

T. A. Manteuffel, “An interval analysis approach to rank determination in linear least squares problems,” Sandia National Laboratories Rep. SAND80-0655 (Sandia National Laboratories, Albuquerque, N.M., 1980).

Miller, C. M.

R. Engleman, R. A. Keller, C. M. Miller, “Effect of optical saturation on hyperfine intensities in optogalvanic spectroscopy,” J. Opt. Soc. Am. B 2, 897 (1985).
[CrossRef]

C. M. Miller, R. Engleman, R. A. Keller, “Resonance-ionization mass spectrometry for high-resolution mass-resolved spectra of rare isotopes,” J. Opt. Soc. Am. B 2, 1503 (1985).
[CrossRef]

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.

C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.

N. S. Nogar, S. W. Downey, C. M. Miller, “Analytical capabilities of RIMS: absolute sensitivity and isotope analysis,” in Resonance Ionization Spectroscopy 1984, G. S. Hurst, M. G. Payne, eds. (Institute of Physics, Bristol, UK, 1984),p. 91.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.

D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.

Nogar, N. S.

C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.

N. S. Nogar, S. W. Downey, C. M. Miller, “Analytical capabilities of RIMS: absolute sensitivity and isotope analysis,” in Resonance Ionization Spectroscopy 1984, G. S. Hurst, M. G. Payne, eds. (Institute of Physics, Bristol, UK, 1984),p. 91.

Palmer, B. A.

M. L. Parsons, B. A. Palmer, “Fundamental data to be obtained with the Los Alamos Fourier transform spectrometer,” Spectrochim. Acta Part B 43B, 75 (1988).

C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.

Parent, D. C.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.

D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.

Parsons, M. L.

M. L. Parsons, B. A. Palmer, “Fundamental data to be obtained with the Los Alamos Fourier transform spectrometer,” Spectrochim. Acta Part B 43B, 75 (1988).

Poths, J.

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

Schawlow, A. L.

Svanberg, S.

Whitaker, T. J.

T. J. Whitaker, “Isotopically selective laser measurements: high-resolution methods provide isotope selectivity and ultrasensitive detection of atomic species,” Lasers Appl. 5(8), 67 (1986).

B. D. Cannon, B. A. Bushaw, T. J. Whitaker, “Continuous-wave double-resonance ionization mass spectrometry of barium,” J. Opt. Soc. Am. B 2, 1542 (1985).
[CrossRef]

Wolber, G.

H. Figger, G. Wolber, “Precision measurement of the hyperfine structure of Lu175with the atomic beam magnetic resonance method,” Z. Phys. 264, 95 (1973).
[CrossRef]

Xia, H.-R.

Xiao, G.-G.

Yan, G.-Y.

Zimmermann, D.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

Zimmermann, P.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Focus (1)

R. A. Keller, D. S. Bomse, D. A. Cremers, “Pushing isotopic selectivity to one part in 1014,” Laser Focus 17(10), 75 (1981).

Lasers Appl. (1)

T. J. Whitaker, “Isotopically selective laser measurements: high-resolution methods provide isotope selectivity and ultrasensitive detection of atomic species,” Lasers Appl. 5(8), 67 (1986).

Natl. Bur. Stand. (U.S.) Tech. Note (1)

W. R. Shields, ed., “Analytical mass spectrometry section: instrumentation and procedures for isotopic analysis,” Natl. Bur. Stand. (U.S.) Tech. Note 277 (1966).

Nucl. Instrum. Methods (1)

W. M. Fairbank, “Photon burst mass spectrometry,” Nucl. Instrum. Methods B29, 407 (1987).

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. G. Inghram, W. A. Chupka, “Surface ionization source using multiple filaments,” Rev. Sci. Instrum. 24, 518 (1953).
[CrossRef]

Spectrochim. Acta (1)

M. L. Parsons, B. A. Palmer, “Fundamental data to be obtained with the Los Alamos Fourier transform spectrometer,” Spectrochim. Acta Part B 43B, 75 (1988).

Z. Phys. (1)

H. Figger, G. Wolber, “Precision measurement of the hyperfine structure of Lu175with the atomic beam magnetic resonance method,” Z. Phys. 264, 95 (1973).
[CrossRef]

Z. Phys. A (1)

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d 6s2 2D)3/2−5d 6s 6p4F3/2of Lu175and Lu176,” Z. Phys. A 295, 307 (1980).
[CrossRef]

Other (10)

T. A. Manteuffel, “An interval analysis approach to rank determination in linear least squares problems,” Sandia National Laboratories Rep. SAND80-0655 (Sandia National Laboratories, Albuquerque, N.M., 1980).

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Very high resolution saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Advances in Laser Science III, A. C. Tarn, J. L. Gole, W. C. Stwalley, eds. (American Institute of Physics, New York, 1988), p. 776.

W. M. Fairbank, R. D. LaBelle, R. A. Keller, C. M. Miller, J. Poths, B. L. Fearey, “Prospects for large dynamic range isotope analysis using photon burst mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 53.

R. D. LaBelle, W. M. Fairbank, R. A. Keller, “Photon burst detection of accelerated Mg+,” Phys. Rev. A (to be published).

C. M. Miller, B. L. Fearey, B. A. Palmer, N. S. Nogar, “High-fidelity in isotope ratio measurements for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 297.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Isotopically selective, Doppler-free, saturation spectroscopy of lutetium isotopes via resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 285.

N. S. Nogar, S. W. Downey, C. M. Miller, “Analytical capabilities of RIMS: absolute sensitivity and isotope analysis,” in Resonance Ionization Spectroscopy 1984, G. S. Hurst, M. G. Payne, eds. (Institute of Physics, Bristol, UK, 1984),p. 91.

B. L. Fearey, D. C. Parent, R. A. Keller, C. M. Miller, “Secondary, non-resonant cw laser ionization efficiency enhancement for resonance ionization mass spectrometry,” in Resonance Ionization Spectroscopy 1988, T. B. Lucatorto, J. E. Parks, eds. (Institute of Physics, Bristol, UK, 1989),p. 263.

D. C. Parent, B. L. Fearey, C. M. Miller, R. A. Keller, “Enhancement of ion yield in resonance ionization mass spectrometry with cw lasers,” in Proceedings of the 35th ASMS Conference (American Society for Mass Spectrometry, East Lansing, Mich., 1987), p. 1006.

See, for example, W. Demtroder, Laser Spectroscopy—Basic Concepts and Instrumentation (Springer-Verlag, New York, 1988), and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Doppler-free cw RIMS experimental diagram. AMP, amplifier; ATT, variable attenuator; BD, beam dump; BS’s, beam splitters; CM’s, concave mirrors; DVM’s, digital voltmeters; EMT, electron multiplier tube; L’s, lenses; M’s, mirrors; PD, photodiode.

Fig. 2
Fig. 2

Pertinent energy-level diagram for 175Lu and 176Lu with an expanded view of the hyperfine structure. The arrows indicate applicable laser wavelengths. I.P., ionization potential.

Fig. 3
Fig. 3

Saturation spectra for (a)175Lu and (b) 176Lu for the D 2 3 / 2 ° D 2 3 / 2 transition at 22 125 cm−1. cps, Counts per second.

Fig. 4
Fig. 4

Expanded portion of the first two transitions of the 175Lu spectrum along with a wave-number calibration from the étalon. The arrows indicate the hyperfine transition dips and crossover peaks. cps, Counts per second.

Fig. 5
Fig. 5

Difference spectrum for 176Lu. The features above zero correspond to crossover peaks, and those below zero correspond to dips. The arrows indicate small anomalous effects. cps, Counts per second.

Tables (4)

Tables Icon

Table 1 175Lu Hyperfine Features: Relative Frequency Positions (mK)

Tables Icon

Table 2 176Lu Hyperfine Features: Relative Frequency Positions (mK)

Tables Icon

Table 3 Hyperfine Splitting Constants

Tables Icon

Table 4 Hyperfine Splitting Constant Ratios

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

D 2 3 / 2 °
D 2 3 / 2 °
D 2 3 / 2 °

Metrics