Abstract

The excitation of Rydberg atom transitions by submillimeter-wavelength radiation in high-Q cavities forms the basis of the micromaser. The excitation dynamics of a micromaser is known to be dependent on the detailed photon statistics in the interaction cavity and can exhibit well-known collapses and revivals of the atomic inversion, dipole moment, and photon number. We study these effects in a two-photon model in which the time evolution is exactly periodic. We study the field entropy in two two-photon cases and link the fluctuations in the field phase to the changes in the field entropy. We also calculate the statistical Q function of the field and show how the periodicity of the two-photon dynamics is linked to a periodic splitting of the Q function in phase space. Finally this periodicity is linked to the nature of the atom-field dressed states involved in two-photon resonance.

© 1990 Optical Society of America

Full Article  |  PDF Article
Related Articles
Mixed-state SU(2) squeezing and its occurrence in two quantum optical models

P. K. Aravind
J. Opt. Soc. Am. B 3(12) 1712-1717 (1986)

Interactions of a two-level atom with one mode of correlated two-mode field states

Christopher C. Gerry and Ronald F. Welch
J. Opt. Soc. Am. B 8(4) 868-881 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (89)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription