Abstract

The intensity threshold for stimulated Raman scattering (SRS) with a single-mode laser beam is noted to be ≈3 times lower than that with a multimode beam. The intensity threshold for stimulated Brillouin scattering (SBS) from droplets is lower than that for SRS. The temporal profiles of the laser pulse, SRS, and SBS are simultaneously measured with a streak camera (100-psec resolution). The first SBS pulse always occurs earlier than the first SRS pulse. In addition, the subsequent series of SBS and SRS pulses is temporally correlated; i.e., the minimum of the (n + 1)th SBS pulse occurs when the nth SRS pulse reaches a maximum. The second-harmonic beam of a single-mode or multimode Q-switched Nd:YAG laser is tightly focused at the center of the droplet’s illuminated face in order to avoid excitation of any morphology-dependent resonances of a droplet. We conclude that, for single-mode laser excitation of droplets, the internal SBS pumps the SRS.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
    [CrossRef]
  2. M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
    [CrossRef]
  3. D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
    [CrossRef]
  4. M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
    [CrossRef]
  5. N. Bloembergen, Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964).
    [CrossRef]
  6. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  7. H.-B. Lin, A. L. Huston, B. J. Justus, A. J. Campillo, Opt. Lett. 11, 614 (1986).
    [CrossRef] [PubMed]
  8. J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  9. R. K. Chang, S.-X. Qian, J. H. Eickmans, in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
    [CrossRef]
  10. J.-Z. Zhang, R. K. Chang, J. Opt. Soc. Am. B 6, 151 (1989).
    [CrossRef]
  11. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  12. P. Chylek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
    [CrossRef]
  13. S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1985).
    [CrossRef]
  14. S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.
  15. M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
    [CrossRef]
  16. W.-F. Hsieh, H.-M. Tzeng, R. K. Chang, in Special Issue of the Annual Report of the Institute of Physics, Academia Sinica, Taiwan), (Academia Sinica, Taiwan, 1986), Vol. 16, p. 1.
  17. S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  18. W.-F. Hsieh, J.-B. Zheng, R. K. Chang, Opt. Lett. 13, 497 (1988).
    [CrossRef] [PubMed]
  19. R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. Jarzembski, G. Fernandez, Opt. Lett. 13, 494 (1988).
    [CrossRef] [PubMed]
  20. B. Maheu, G. Brehan, G. Bouesbet, Appl. Opt. 26, 23 (1987).
    [CrossRef] [PubMed]
  21. J. P. Barton, D. R. Alexander, S. A. Schaub, J. Appl. Phys. 64, 1632 (1988).
    [CrossRef]
  22. T. Baer, Opt. Lett. 12, 392 (1987).
    [CrossRef] [PubMed]
  23. J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
    [CrossRef] [PubMed]
  24. R. K. Chang, D. H. Leach, J.-Z. Zhang, in Proceedings of the U.S.–Mexico Workshop on Electrodynamics of Interfaces and Composite Systems, Taxco, Mexico, August 10–14,1987, R. G. Barrera, W. L. Mochan, eds. (World Scientific, Singapore, 1988), p. 373.
  25. P. A. Fleury, R. Y. Chiao, J. Acoust. Soc. Am. 39, 751 (1966).
    [CrossRef]
  26. S. M. Chitanvis, C. D. Cantrell, J. Opt. Soc. Am. B 6, 1326 (1989).
    [CrossRef]

1989 (2)

1988 (5)

1987 (3)

1986 (2)

1985 (3)

1984 (2)

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
[CrossRef]

1968 (2)

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
[CrossRef]

D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

1966 (2)

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

P. A. Fleury, R. Y. Chiao, J. Acoust. Soc. Am. 39, 751 (1966).
[CrossRef]

1964 (1)

N. Bloembergen, Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Armstrong, R. L.

Baer, T.

Barber, P. W.

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Benincasa, D. S.

Benner, R. E.

S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1985).
[CrossRef]

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Biswas, A.

Bloembergen, N.

N. Bloembergen, Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964).
[CrossRef]

Bouesbet, G.

Brehan, G.

Campillo, A. J.

Cantrell, C. D.

Chang, R. K.

J.-Z. Zhang, R. K. Chang, J. Opt. Soc. Am. B 6, 151 (1989).
[CrossRef]

J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

W.-F. Hsieh, J.-B. Zheng, R. K. Chang, Opt. Lett. 13, 497 (1988).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

R. K. Chang, D. H. Leach, J.-Z. Zhang, in Proceedings of the U.S.–Mexico Workshop on Electrodynamics of Interfaces and Composite Systems, Taxco, Mexico, August 10–14,1987, R. G. Barrera, W. L. Mochan, eds. (World Scientific, Singapore, 1988), p. 373.

R. K. Chang, S.-X. Qian, J. H. Eickmans, in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef]

W.-F. Hsieh, H.-M. Tzeng, R. K. Chang, in Special Issue of the Annual Report of the Institute of Physics, Academia Sinica, Taiwan), (Academia Sinica, Taiwan, 1986), Vol. 16, p. 1.

Chiao, R. Y.

P. A. Fleury, R. Y. Chiao, J. Acoust. Soc. Am. 39, 751 (1966).
[CrossRef]

Chitanvis, S. M.

Chylek, P.

Creegan, E.

Eickmans, J. H.

R. K. Chang, S.-X. Qian, J. H. Eickmans, in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef]

Fernandez, G.

Fleury, P. A.

P. A. Fleury, R. Y. Chiao, J. Acoust. Soc. Am. 39, 751 (1966).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
[CrossRef]

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Golombok, M.

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

Hill, S. C.

S. C. Hill, R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1985).
[CrossRef]

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

Hsieh, W.-F.

W.-F. Hsieh, J.-B. Zheng, R. K. Chang, Opt. Lett. 13, 497 (1988).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

W.-F. Hsieh, H.-M. Tzeng, R. K. Chang, in Special Issue of the Annual Report of the Institute of Physics, Academia Sinica, Taiwan), (Academia Sinica, Taiwan, 1986), Vol. 16, p. 1.

Huston, A. L.

Jarzembski, M.

Justus, B. J.

Kaiser, W.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
[CrossRef]

D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Latifi, H.

Leach, D. H.

J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

R. K. Chang, D. H. Leach, J.-Z. Zhang, in Proceedings of the U.S.–Mexico Workshop on Electrodynamics of Interfaces and Composite Systems, Taxco, Mexico, August 10–14,1987, R. G. Barrera, W. L. Mochan, eds. (World Scientific, Singapore, 1988), p. 373.

Lin, H.-B.

Long, M. B.

Maheu, B.

Maier, M.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
[CrossRef]

D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

Pendleton, J. D.

P. Chylek, J. D. Pendleton, R. G. Pinnick, Appl. Opt. 24, 3941 (1985).
[CrossRef]

Pinnick, R. G.

Pohl, D.

D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

Pye, D. B.

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

Qian, S.-X.

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

J. B. Snow, S.-X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
[CrossRef] [PubMed]

R. K. Chang, S.-X. Qian, J. H. Eickmans, in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef]

Raymer, M. G.

M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
[CrossRef]

Rzazewski, K.

M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

Shen, Y. R.

N. Bloembergen, Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964).
[CrossRef]

Snow, J. B.

Srivastava, V.

Trippenbach, M.

M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
[CrossRef]

Tzeng, H.-M.

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

W.-F. Hsieh, H.-M. Tzeng, R. K. Chang, in Special Issue of the Annual Report of the Institute of Physics, Academia Sinica, Taiwan), (Academia Sinica, Taiwan, 1986), Vol. 16, p. 1.

Wall, K. F.

Zhang, J.-Z.

J.-Z. Zhang, R. K. Chang, J. Opt. Soc. Am. B 6, 151 (1989).
[CrossRef]

J.-Z. Zhang, D. H. Leach, R. K. Chang, Opt. Lett. 13, 270 (1988).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

R. K. Chang, D. H. Leach, J.-Z. Zhang, in Proceedings of the U.S.–Mexico Workshop on Electrodynamics of Interfaces and Composite Systems, Taxco, Mexico, August 10–14,1987, R. G. Barrera, W. L. Mochan, eds. (World Scientific, Singapore, 1988), p. 373.

Zheng, J.-B.

Appl. Opt. (3)

Chem. Phys. Lett. (1)

M. Golombok, D. B. Pye, Chem. Phys. Lett. 151, 161 (1988).
[CrossRef]

J. Acoust. Soc. Am. (1)

P. A. Fleury, R. Y. Chiao, J. Acoust. Soc. Am. 39, 751 (1966).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, J. Appl. Phys. 64, 1632 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

M. Trippenbach, K. Rzazewski, M. G. Raymer, J. Opt. Soc. Am. A 1, 671 (1984).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (7)

Phys. Rev. (1)

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. 177, 580 (1968).
[CrossRef]

Phys. Rev. Lett. (4)

D. Pohl, M. Maier, W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

N. Bloembergen, Y. R. Shen, Phys. Rev. Lett. 13, 720 (1964).
[CrossRef]

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966).
[CrossRef]

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

Other (4)

R. K. Chang, D. H. Leach, J.-Z. Zhang, in Proceedings of the U.S.–Mexico Workshop on Electrodynamics of Interfaces and Composite Systems, Taxco, Mexico, August 10–14,1987, R. G. Barrera, W. L. Mochan, eds. (World Scientific, Singapore, 1988), p. 373.

W.-F. Hsieh, H.-M. Tzeng, R. K. Chang, in Special Issue of the Annual Report of the Institute of Physics, Academia Sinica, Taiwan), (Academia Sinica, Taiwan, 1986), Vol. 16, p. 1.

S. C. Hill, R. E. Benner, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), p. 3.

R. K. Chang, S.-X. Qian, J. H. Eickmans, in Methods of Laser Spectroscopy, Y. Prior, A. Ben-Reuven, M. Rosenbluh, eds. (Plenum, New York, 1986), p. 249.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometric-optics schematics of the k vector of the incident laser beam (with an angular spread kL + ΔkL) and of the SBS (kSBS) for (a) focused center illumination, (b) focused edge illumination, and (c) the input resonance. In order for the droplet to provide optical feedback at λSBS, kSBS must be tangent to the droplet interface, and the SBS must travel around the droplet rim (shown in the counterclockwise direction). With focused center illumination (a), no rays graze the droplet interface, and thus no input resonance can be excited, regardless of the laser wavelength or droplet radius. When the droplet rim is illuminated (c), the input resonance can be excited for specific ratios of the droplet radius and λL. The internal radiation at λL is shown traveling around the droplet rim in the clockwise direction.

Fig. 2
Fig. 2

Photographs of ethanol droplets (a ≈ 45 μm) irradiated with a single-mode laser beam (propagating from left to right at ≈1 GW/cm2) focused along the principal diameter of the droplet [referred to as focused center illumination; see Fig. 1(a)]. (a) The green image consists of two SBS arcs, one elastic scattering dot at the focal spot (fs) of the internal laser radiation and one elastic scattering dot resulting from specular reflection (sr) of the incident radiation. (b) The red image consists of two SRS arcs. The SBS and SRS arc lengths are always equal, and both arcs lengthen and shorten as the input intensity increases and decreases, respectively. Below the SBS intensity threshold, the SBS and SRS arcs are not observable; only the two green dots (fs and sr) are detectable.

Fig. 3
Fig. 3

(a) The experimental configuration used to determine the wavelength shift of the green arcs. The aperture passes a portion of the green arc onto the Fabry–Perot interferometer (F–P). A green filter (not shown) blocks the red SRS from reaching the interferometer. The slit passes a strip of the Fabry–Perot rings (see the inset for a front view) onto an intensified photodiode array. Typical Fabry–Perot interferometer outputs are shown for (b) focused center illumination of methanol droplets (a ≈ 45 μm) and for (c) focused edge illumination. The unavoidable elastic scattering serves as a convenient fiducial marker for the elastic wavelength and as a calibrator of the interferometer linewidth. The free spectral range (FSR) is 0.435 cm−1.

Fig. 4
Fig. 4

Schematic of the experimental configuration used to measure simultaneously the time profiles of the laser pulse, one red SRS arc, and one green SBS arc. The dove prism rotates the images shown in Fig. 2 by 90°. The green filter passes part of the green image (one arc and the fs dot near the droplet shadow face in Fig. 1), and the red filter passes part of the red image (one arc near the droplet’s illuminated face). Lens 2 focuses this split color image onto the vertical streak-camera slit, which blocks most of the elastic radiation from the fs dot. An optical fiber channels a portion of the laser beam onto the very top of the streak-camera slit.

Fig. 5
Fig. 5

Three-dimensional plots of the time profiles of the laser beam, SRS (red arc), and SBS (green arc) for focused center illumination of ethanol droplets (a ≈ 45 μm). The single-mode laser intensity is ≈1 GW/cm2 for all three laser shots [(a)–(c)]. Time is along the horizontal axis, the position along the streak-camera slit is along the vertical axis, and the relative intensity is displayed along the axis orthogonal to the time and position axes.

Fig. 6
Fig. 6

Similar to Fig. 5 except that the position along the streak-camera slit is not displayed. The three-dimensional curve shown in Fig. 5(b) is replotted in (a). Time profiles from two different laser shots (at ≈1 GW/cm2) are shown in (b) and (c). Note that the SRS and SBS pulses in all three curves are correlated; i.e., the decay of the first SBS pulse is followed by the growth of the first SRS pulse, and the regrowth of the (n + 1)th SBS pulse occurs after the decay of the nth SRS pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( δ a δ θ + α B ) | E B | 2 = ( A | E L | 2 B | E R | 2 ) | E B | 2 , ( δ a δ θ + α R ) | E R | 2 = ( C | E B | 2 + D | E L | 2 E | E 2 R | 2 ) | E R | 2 , ( δ δ z ) | E L | 2 = ( F | E B | 2 + G | E R | 2 ) | E L | 2 ,

Metrics