Abstract

Stability in a Raman ring resonator is studied by using the adiabatic approximation. The analysis is based on far-off resonance Raman scattering in hydrogen. A medium-power approximation is employed, which is good for intensities less than 30 MW/cm2. The resulting differential equations retain their standard low-power Raman gain dependance in addition to an intensity-dependent phase. The steady-state intensity input–output behavior, as well as the linear stability analysis, is accomplished analytically without invoking the mean-field approximation. Feedback is applied to the Stokes beam, a gain situation, or to the depleted pump beam. The Stokes frequency is assumed to be perfectly tuned to the atomic and cavity resonances. It is shown that both situations are multistable and that the power-dependent phase largely determines the stability characteristics. Furthermore, we show that the negative slope branches can be stable when feedback is applied to the pump if the output pump intensity is decreasing with increasing input pump intensity.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Carmichael, in Optical Instabilities, R. W. Boyd, M. G. Raymer, and L. M. Narducci, eds. (Cambridge U. Press, Cambridge, 1986), pp. 111–128.
  2. R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).
    [Crossref]
  3. J. A. Hermann and B. V. Thompson, in Optical Bistability, C. M. Bowden, M. Ciftan, and H. R. Robl, eds. (Plenum, New York, 1981), pp. 199–220;J. A. Hermann, Opt. Commun. 44, 62 (1982);J. A. Hermann, J. N. Elgin, and P. L. Knight, J. Phys. B 45, 255 (1982);J. A. Hermann and D. F. Walls, Phys. Rev. A 26, 2085 (1982);J. A. Hermann and B. V. Thompson, Opt. Lett. 7, 301 (1982);J. A. Hermann, Opt. Commun. 37, 431 (1981);B. V. Thompson and J. A. Hermann, Phys. Lett. 83A, 376 (1981);J. A. Hermann and J. N. Elgin, Phys. Lett. 86A, 461 (1981).
    [Crossref] [PubMed]
  4. P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
    [Crossref]
  5. E. Abraham and W. J. Firth, Opt. Acta 30, 1541 (1983).
    [Crossref]

1987 (1)

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

1983 (1)

E. Abraham and W. J. Firth, Opt. Acta 30, 1541 (1983).
[Crossref]

1978 (1)

R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).
[Crossref]

Abraham, E.

E. Abraham and W. J. Firth, Opt. Acta 30, 1541 (1983).
[Crossref]

Alsing, P.

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

Bonifacio, R.

R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).
[Crossref]

Cardimona, D. A.

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

Carmichael, H. J.

H. J. Carmichael, in Optical Instabilities, R. W. Boyd, M. G. Raymer, and L. M. Narducci, eds. (Cambridge U. Press, Cambridge, 1986), pp. 111–128.

Firth, W. J.

E. Abraham and W. J. Firth, Opt. Acta 30, 1541 (1983).
[Crossref]

Gavrielides, A.

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

Hermann, J. A.

J. A. Hermann and B. V. Thompson, in Optical Bistability, C. M. Bowden, M. Ciftan, and H. R. Robl, eds. (Plenum, New York, 1981), pp. 199–220;J. A. Hermann, Opt. Commun. 44, 62 (1982);J. A. Hermann, J. N. Elgin, and P. L. Knight, J. Phys. B 45, 255 (1982);J. A. Hermann and D. F. Walls, Phys. Rev. A 26, 2085 (1982);J. A. Hermann and B. V. Thompson, Opt. Lett. 7, 301 (1982);J. A. Hermann, Opt. Commun. 37, 431 (1981);B. V. Thompson and J. A. Hermann, Phys. Lett. 83A, 376 (1981);J. A. Hermann and J. N. Elgin, Phys. Lett. 86A, 461 (1981).
[Crossref] [PubMed]

Lugiato, L.

R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).
[Crossref]

Peterson, P. R.

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

Thompson, B. V.

J. A. Hermann and B. V. Thompson, in Optical Bistability, C. M. Bowden, M. Ciftan, and H. R. Robl, eds. (Plenum, New York, 1981), pp. 199–220;J. A. Hermann, Opt. Commun. 44, 62 (1982);J. A. Hermann, J. N. Elgin, and P. L. Knight, J. Phys. B 45, 255 (1982);J. A. Hermann and D. F. Walls, Phys. Rev. A 26, 2085 (1982);J. A. Hermann and B. V. Thompson, Opt. Lett. 7, 301 (1982);J. A. Hermann, Opt. Commun. 37, 431 (1981);B. V. Thompson and J. A. Hermann, Phys. Lett. 83A, 376 (1981);J. A. Hermann and J. N. Elgin, Phys. Lett. 86A, 461 (1981).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

P. Alsing, P. R. Peterson, D. A. Cardimona, and A. Gavrielides, IEEE J. Quantum Electron. QE-23, 557 (1987).
[Crossref]

Lett. Nuovo Cimento (1)

R. Bonifacio and L. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).
[Crossref]

Opt. Acta (1)

E. Abraham and W. J. Firth, Opt. Acta 30, 1541 (1983).
[Crossref]

Other (2)

J. A. Hermann and B. V. Thompson, in Optical Bistability, C. M. Bowden, M. Ciftan, and H. R. Robl, eds. (Plenum, New York, 1981), pp. 199–220;J. A. Hermann, Opt. Commun. 44, 62 (1982);J. A. Hermann, J. N. Elgin, and P. L. Knight, J. Phys. B 45, 255 (1982);J. A. Hermann and D. F. Walls, Phys. Rev. A 26, 2085 (1982);J. A. Hermann and B. V. Thompson, Opt. Lett. 7, 301 (1982);J. A. Hermann, Opt. Commun. 37, 431 (1981);B. V. Thompson and J. A. Hermann, Phys. Lett. 83A, 376 (1981);J. A. Hermann and J. N. Elgin, Phys. Lett. 86A, 461 (1981).
[Crossref] [PubMed]

H. J. Carmichael, in Optical Instabilities, R. W. Boyd, M. G. Raymer, and L. M. Narducci, eds. (Cambridge U. Press, Cambridge, 1986), pp. 111–128.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ring resonator immersed in hydrogen. The incident Stokes and pump fields are Sin and Pin, and the transmitted fields are St and Pt. Two mirrors are 100% reflecting at both wavelengths. The input mirror reflects the Stokes and transmits the pump for feedback on the Stokes.

Fig. 2
Fig. 2

(a) Input Stokes intensity versus output Stokes intensity for a reflectivity of R = 0.01 and an input pump intensity of 10 MW/ cm2. In one curve the dark solid portions are stable, and the negative slope regions are unstable. The light solid curve is the output versus input amplifier equation. The feedback is on the Stokes. (b) Eigenvalues versus output Stokes intensity. Parameters are the. same as for (a).

Fig. 3
Fig. 3

Input Stokes intensity versus output Stokes intensity for a reflectivity of R = 0.01 and an input pump intensity of (a) 5, (b) 10, and (c) 20 MW/cm2. Feedback is on the Stokes.

Fig. 4
Fig. 4

Input Stokes intensity versus output Stokes intensity for a reflectivity of R = 0.25 and an input pump intensity of 5, 10, and 20 MW/cm2. Feedback is on the Stokes.

Fig. 5
Fig. 5

(a) Input pump intensity versus output pump intensity for a reflectivity of R = 0.01 and an input Stokes intensity of 10 MW/ cm2. In one curve the dark solid portions are stable, and the dashed are unstable. The light solid curve is the output versus the input amplifier equation. The feedback is on the pump. (b) Eigenvalues versus output pump intensity. Parameters are the same as for (a).

Fig. 6
Fig. 6

Input pump intensity versus output pump intensity for a reflectivity of R = 0.01 and input Stokes intensities of 5, 10, and 20 MW/cm2. Feedback is on the pump.

Fig. 7
Fig. 7

Input pump intensity versus output pump intensity for a reflectivity of R = 0.25 and input Stokes intensities of 5, 10, and 20 MW/cm2. Feedback is on the pump.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

d d t Q + Γ Q = i Δ Q + i Ω * W ,
d d t W = i 2 ( Ω Q Ω * Q * ) γ ( W + 1 ) ,
Δ = Δ s + δ p | P | 2 + δ s | S | 2 , Ω = 2 δ p s P * S .
Q s s = γ D ( Δ i Γ ) Ω * ,
W s s = γ D ( Γ 2 + Δ 2 ) ,
D = γ ( Δ 2 + Γ 2 ) + Γ | Ω | 2 .
d d ξ S = i 2 [ n 3 ( ω 3 ) 1 ] k s ( 1 + W ) S i 2 [ n 1 ( ω s ) 1 ] k s ( 1 W ) S i κ Q * P
d d ξ P = i 2 [ n 1 ( ω p ) 1 ] k p ( 1 W ) P i 2 [ n 3 ( ω p ) 1 ] k p ( 1 + W ) P i κ ( k p / k s ) Q S ,
d d ξ S ( z , t ) = i α s | P | 2 | S | 2 S + β s | P | 2 S ,
d d ξ P ( z , t ) = i α p | P | 2 | S | 2 P β p | S | 2 P ,
α s = [ n 3 ( ω s ) n 1 ( ω s ) ] k s 2 δ p s 2 / γ Γ ,
α p = [ n 3 ( ω p ) n 1 ( ω p ) ] k p 2 δ p s 2 / γ Γ ,
β s = 2 κ δ p s / Γ , β p = β s k p / k s .
I s ( z ) = I s 0 ( 1 + ω p I s 0 ω s I p 0 ) exp ( 2 g I z ) 1 + ω p I s 0 ω s I p 0 exp ( 2 g I z ) ,
I p ( z ) = I p 0 ( 1 + ω p I s 0 ω s I p 0 ) 1 + ω p I s 0 ω s I p 0 exp ( 2 g I z ) .
ψ s ( z ) = 2 π α s Γ × 10 13 δ p s κ c [ I s 0 I s ( z ) ] ,
ψ p ( z ) = 2 π α p Γ × 10 13 δ p s κ c [ I s 0 I s ( z ) ] ,
S ( 0 , t ) = T S i + R S ( L , t ) .
S ( z , t ) = S ( z ) + δ S ( z , t )
P ( z , t ) = P ( z ) + δ P ( z , t ) ,
d δ S d ξ = i α s [ S | P | 2 ( S * δ S + S δ S * ) + S | S | 2 ( P * δ P + P δ p * ) + | P | 2 | S | 2 δ S ] + β s [ S ( P * δ P + P δ P * ) + | P | 2 δ S ]
d δ P d ξ = i α p [ P | S | 2 ( P * δ P + P δ P * ) + P | P | 2 ( S * δ S + S δ S * ) + | P | 2 | S | 2 δ P ] β p [ P ( S * δ S + S δ S * ) + | S | 2 δ P ] .
d S + d ξ = S * d δ S d ξ ± S d δ S * d ξ + δ S d S * d z ± δ S * d S d z
d S + d ξ = 2 β s ( | S | 2 P + + | P | 2 S + ) ,
d S d ξ = i α s ( 2 | P | 2 | S | 2 S + + 2 | S | 2 | S | 2 P + ) + 2 β s | P | 2 S ,
d P + d ξ = 2 β p ( | P | 2 S + + | S | 2 P + ) ,
d P d ξ = i α p ( 2 | P | 2 | S | 2 P + + 2 | P | 2 | P | 2 S + ) 2 β p | S | 2 P ,
S + ( ξ ) β s + P + ( ξ ) β p = constant ,
| S | 2 k s + | P | 2 k p = constant = 8 π c ( I s 0 k s + I p 0 k p ) .
S + ( ξ ) = S + ( z ) [ exp ( λ τ ) + exp ( λ * τ ) ]
S ( ξ ) = i S ( z ) [ exp ( λ τ ) + exp ( λ * τ ) ] ,
d S + ( z ) d z = 2 β s ( | S | 2 P + + | P | 2 S + ) ,
d S ( z ) d z = i α s β s | S | 2 d S + d z + 2 β s | P | 2 S ,
d P + ( z ) d z = 2 β p ( | P | 2 S + + | S | 2 P + ) ,
d P ( z ) d z = i α p β p | P | 2 d P + d z 2 β p | S | 2 P ,
S + ( z ) β s + P + ( z ) β p = constant = S + ( 0 ) β s ,
S + ( z ) = f ( z ) S + ( 0 ) ,
f ( z ) = υ exp ( 2 g I z ) [ 1 + υ exp ( 2 g I z ) ] 2 [ 2 g I z + υ exp ( 2 g I z ) + ( 1 + 2 υ ) υ ] ,
δ S = ( S + + S ) / ( 2 S * ) .
S ( z ) = α s β s | S ( z ) | 2 [ 1 f ( z ) ] S + ( 0 ) + | S ( z ) | 2 | S ( 0 ) | 2 S ( 0 ) .
exp ( 2 λ L / c ) 1 R f ( L ) [ I s 0 I s ( L ) ] 1 / 2 { ( I s 0 I s ( L ) + f ) cos [ ψ s ( L ) ] α s β s ( 8 π × 10 13 / c ) I s ( L ) ( 1 f ) sin [ ψ s ( L ) ] } × exp ( λ L / c ) + 1 R f = 0 .
exp ( 2 λ L / c ) 1 R f ( L ) [ I p 0 I p ( L ) ] 1 / 2 { [ I p 0 I p ( L ) + f ] cos [ ψ p ( L ) ] α p β p ( 8 π × 10 13 / c ) I p ( L ) ( 1 f ) sin [ ψ p ( L ) ] } × exp ( λ L / c ) + 1 R f = 0 ,
f ( z ) = υ exp ( 2 g I z ) [ 1 + υ exp ( 2 g I z ) ] 2 { 2 g I z + [ υ exp ( 2 g I z ) ] 1 + ( 2 + υ ) } .

Metrics