Abstract

Novel second-order nonlinear optical films are prepared from glasses of two organic compounds, (S)-2-N-α-(methylbenzylamino)-5-nitropyridine and 2-N-(cyclooctylamino)-5-nitropyridine, cooled rapidly from the isotropic liquid above the melting point. Extremely slow crystallization in the vicinity of the glass transition temperature Tg permits a polar orientation of these organic molecules under high electric fields at temperatures above Tg. Subsequent cooling to temperatures below Tg freezes in the polarization. A maximum value of the d33 nonlinear susceptibility of 7.5 pm/V and reasonable waveguiding properties are obtained. The poling dynamics of these organic glasses near Tg as monitored by second-harmonic generation exhibit a typical William–Landel–Ferry temperature dependence that is identical to their dielectric relaxation characteristics.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  2. D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).
  3. J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).
  4. G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).
  5. K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
    [CrossRef]
  6. C. Ye and T. J. Marks, Macromolecules 20, 2322 (1987).
    [CrossRef]
  7. K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), pp. 24–27.
  8. Measured in our laboratory using electric-field-induced second-harmonic generation and capacitance bridge techniques, respectively.
  9. R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
    [CrossRef]
  10. P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
    [CrossRef]
  11. R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).
  12. ∓71.4° − 72.2°C; IR 3440, 3420, 2910, 2860, 1600, 1425, 1335, 1295, 1120 cm−1; 1HNMR (CDCl3δ 1.40 − 2.10(m, 15H), 3.90 (br s, 1H), 5.40 (br s, 1H), 6.25(d, J= 9, 1H), 8.11 (dd, J= 3, 9, 1H), 8.92(d, J= 3, 1H); MS m/e relative intensity 250 (1.5), 249(M+, 8.7), 178 (24.8), 164 (100.0). Calculated values for C13H19N2O2: C, 62.63; H, 7.68; N, 16.86. Found: C, 62.37; H, 7.41; N, 16.80.
  13. J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
    [CrossRef]
  14. N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).
  15. K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
    [CrossRef]
  16. S. K. Kurtz, J. Jerphagnon, and M. M. Choy, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, New York, 1979), Vol. 11, p. 671.
  17. J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
    [CrossRef]
  18. S. Krause and C. T. O’Konski, in Molecular Electro-Optics, S. Krause, ed. (Plenum, Troy, N.Y., 1980).
  19. D. J. Williams, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), pp. 405–436.
    [CrossRef]

1988 (1)

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

1987 (2)

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

C. Ye and T. J. Marks, Macromolecules 20, 2322 (1987).
[CrossRef]

1986 (1)

K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

1983 (1)

G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).

1982 (1)

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

1981 (1)

K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
[CrossRef]

1977 (1)

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

1970 (1)

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

Arend, H.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Azema, A.

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Badan, J.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).

Bailey, R. T.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Bosshard, Ch.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Chapuis, G.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Chemla, D. S.

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).

Cheng, Y.

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Choy, M. M.

S. K. Kurtz, J. Jerphagnon, and M. M. Choy, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, New York, 1979), Vol. 11, p. 671.

Crowley, J.

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Cruickshank, F. R.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Dobrowolski, D.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Fischer, M.

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

Garito, A. F.

K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
[CrossRef]

Günter, P.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Guthrie, S. M. G.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Hierle, R.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).

Jain, K.

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

S. K. Kurtz, J. Jerphagnon, and M. M. Choy, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, New York, 1979), Vol. 11, p. 671.

Kashyap, R.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Krause, S.

S. Krause and C. T. O’Konski, in Molecular Electro-Optics, S. Krause, ed. (Plenum, Troy, N.Y., 1980).

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

S. K. Kurtz, J. Jerphagnon, and M. M. Choy, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, New York, 1979), Vol. 11, p. 671.

Lalama, S. L.

K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Marks, T. J.

C. Ye and T. J. Marks, Macromolecules 20, 2322 (1987).
[CrossRef]

McArdle, B. J.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

McCrum, N. G.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).

Meredith, G. R.

G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).

Morrison, H.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Nayer, B. K.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

O’Konski, C. T.

S. Krause and C. T. O’Konski, in Molecular Electro-Optics, S. Krause, ed. (Plenum, Troy, N.Y., 1980).

Perigaud, A.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).

Pugh, D.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Read, B. E.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).

Santo, R.

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

Shepherd, E. A.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Sherwood, J. N.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Singer, K. D.

K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
[CrossRef]

K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), pp. 24–27.

Sohn, J. E.

K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

Sutter, K.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

Swalen, J. D.

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

Tacke, M.

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

Twieg, R.

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Twieg, R. J.

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

van Dusen, J. G.

G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).

Vidakovic, P.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).

White, K. I.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Williams, D. J.

G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).

D. J. Williams, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), pp. 405–436.
[CrossRef]

Williams, G.

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Ye, C.

C. Ye and T. J. Marks, Macromolecules 20, 2322 (1987).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Youn, C. S.

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Zyss, J.

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).

Am. Chem. Soc. Div. Polym. Chem. (1)

R. Twieg, K. Jain, Y. Cheng, J. Crowley, and A. Azema, Am. Chem. Soc. Div. Polym. Chem. 23, 208 (1982).

Am. Chem. Soc. Symp. Ser. (1)

G. R. Meredith, J. G. van Dusen, and D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” Am. Chem. Soc. Symp. Ser. 233, 109 (1983).

Appl. Phys. Lett. (2)

K. D. Singer, J. E. Sohn, and S. L. Lalama, Appl. Phys. Lett. 49, 248 (1986).
[CrossRef]

P. Günter, Ch. Bosshard, K. Sutter, H. Arend, G. Chapuis, R. J. Twieg, and D. Dobrowolski, Appl. Phys. Lett. 50, 486 (1987).
[CrossRef]

IBM J. Res. Dev. (1)

J. D. Swalen, R. Santo, M. Tacke, and M. Fischer, IBM J. Res. Dev. 21, 2, 168 (1977).
[CrossRef]

J. Appl. Phys. (1)

J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).
[CrossRef]

J. Chem. Phys. (1)

K. D. Singer and A. F. Garito, J. Chem. Phys. 75, 3572 (1981).
[CrossRef]

Macromolecules (1)

C. Ye and T. J. Marks, Macromolecules 20, 2322 (1987).
[CrossRef]

Opt. Commun. (1)

R. T. Bailey, F. R. Cruickshank, S. M. G. Guthrie, B. J. McArdle, H. Morrison, D. Pugh, E. A. Shepherd, J. N. Sherwood, C. S. Youn, R. Kashyap, B. K. Nayer, and K. I. White, Opt. Commun. 65, 229 (1988).
[CrossRef]

Other (10)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

D. S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987).

K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), pp. 24–27.

Measured in our laboratory using electric-field-induced second-harmonic generation and capacitance bridge techniques, respectively.

S. K. Kurtz, J. Jerphagnon, and M. M. Choy, Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology (Springer-Verlag, New York, 1979), Vol. 11, p. 671.

S. Krause and C. T. O’Konski, in Molecular Electro-Optics, S. Krause, ed. (Plenum, Troy, N.Y., 1980).

D. J. Williams, in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, Orlando, Fla., 1987), pp. 405–436.
[CrossRef]

N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967).

∓71.4° − 72.2°C; IR 3440, 3420, 2910, 2860, 1600, 1425, 1335, 1295, 1120 cm−1; 1HNMR (CDCl3δ 1.40 − 2.10(m, 15H), 3.90 (br s, 1H), 5.40 (br s, 1H), 6.25(d, J= 9, 1H), 8.11 (dd, J= 3, 9, 1H), 8.92(d, J= 3, 1H); MS m/e relative intensity 250 (1.5), 249(M+, 8.7), 178 (24.8), 164 (100.0). Calculated values for C13H19N2O2: C, 62.63; H, 7.68; N, 16.86. Found: C, 62.37; H, 7.41; N, 16.80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematics of (a) MBANP and (b) COANP chemical structures.

Fig. 2
Fig. 2

DSC scans on (a) fully crystallized samples and (b) glassy samples of MBANP and COANP, measured at the heating rate of 20°C/min.

Fig. 3
Fig. 3

Wide-angle x-ray goniometer scans (λ= 0.154 nm) of (a) MBANP glass and (b) MBANP fully crystallized.

Fig. 4
Fig. 4

Transverse electric modes excited in MBANP glass at (a) 1064-nm, (b) 632.8-nm, and (c) 514.5-nm wavelengths.

Fig. 5
Fig. 5

Plots of (a) the refractive index and (b) the absorption of MBANP glass as functions of the wavelength of light.

Fig. 6
Fig. 6

Dielectric constants of (a) MBANP glass and (b) COANP glass as a function of temperature measured at various frequencies (from the left: 100 Hz, 110 Hz, 200 Hz, 400 Hz, 1 kHz, 2kHz, 4kHz, 10 kHz, 20 kHz, 40 kHz, 100 kHz, 200 kHz, 400 kHz, 1 MHz, 2 MHz, 4 MHz).

Fig. 7
Fig. 7

Values of dielectric loss tan δ of (a) MBANP glass and (b) COANP glass as a function of temperature measured at various frequencies (from the left: 100 Hz, 110 Hz, 200 Hz, 400 Hz, 1 kHz, 2 kHz, 4 kHz, 10 kHz, 20 kHz, 40 kHz, 100 kHz).

Fig. 8
Fig. 8

Activation diagram for MBANP glass: the triangles are obtained from the dielectric relaxation results (Figs. 6 and 7); the squares are for the rise time of the SH signals (Fig. 13 below); and the circles are for the decay time of the SH signals (Fig. 13).

Fig. 9
Fig. 9

Schematic of the sample cell and beam geometry: p-pol, p polarized; s-pol, s polarized.

Fig. 10
Fig. 10

Schematic of the setup for the second-harmonic-generation experiment: Pol, polarizer; PM, photomultiplier; PC, personal computer.

Fig. 11
Fig. 11

Maker-fringe data (points) and theoretical fits (solid curves) for poled (a) MBANP glass of 195-μm thickness and (b) COANP glass of 155-μm thickness.

Fig. 12
Fig. 12

Plots of Maker-fringe data (points) and theoretical fits (solid curves) for (a) poled MBANP glass of 10-μm thickness and (b) COANP glass of 13-μm thickness.

Fig. 13
Fig. 13

Time dependence of the second-harmonic signal from MBANP glass as the field is switched on and off: (a) T = 8.5°C; (b) T = 3°C.

Fig. 14
Fig. 14

Saturation values of d31 and d33 nonlinear coefficients as obtained from dynamic second-harmonic experiments as a function of applied voltage for (a) MBANP glass of 10-μm thickness and (b) COANP glass of 13-μm thickness.

Fig. 15
Fig. 15

Schematic of timing charts for the poling–freezing-in experiment, indicating the temperature, the applied voltage, the incident light intensity, and SH signal at different times.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P N L = [ 0 0 0 0 d 31 0 0 0 0 d 31 0 0 d 31 d 31 d 33 0 0 0 ] [ E 1 2 E 2 2 E 3 2 2 E 2 E 3 2 E 1 E 3 2 E 1 E 2 ] = [ 2 d 31 E 1 E 3 2 d 31 E 2 E 3 d 31 E 1 2 + d 31 E 2 2 + d 33 E 3 2 ] ,
E = [ 0 E 0 ] , P NL = T s ( ϕ ) [ 0 0 d 31 E 2 ] ,
I 2 ω ( ϕ ) = A s ( ϕ ) P NL 2 sin 2 [ π l l c ( ϕ ) ] ;
E = [ E cos ϕ 0 E sin ϕ ] , P NL = T p ( ϕ ) [ 2 d 31 E 2 sin ϕ cos ϕ 0 d 31 E 2 cos 2 ϕ + d 33 E 2 sin 2 ϕ ] , I 2 ω ( ϕ ) = A p ( ϕ ) P NL 2 sin 2 π l l c ( ϕ ) ,

Metrics