Abstract

The optogalvanic spectrum of lutetium in the 5650–6250-Å wavelength range was studied with a cw dye laser and a hollow-cathode lamp. The relative intensities of the observed spectral lines and the classification for some of the new transitions of Lu i are reported. With a single-frequency dye laser as the excitation source in the optogalvanic detection setup, the hyperfine structure of many excited levels of 175Lu were investigated, and the corresponding hyperfine coupling constants were measured. The hyperfine coupling constants of the 37 193.98-,37 742.56-, and 39 279.48-cm−1 levels of the 5d6s7s even configuration, the 36 952.93-cm−1 level of the 6s27d even configuration, and the 43 514.29-cm−1 level of the 6s225p odd configuration are reported here. For other configurations studied, the present results are compared with the theoretical and experimental values available in the literature.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Meggers, B. F. Scribner, “Regularities in the spectra of lutetium,” J. Res. Nat. Bur. Stand. 5, 73–81 (1930).
    [CrossRef]
  2. A. S. King, Astrophys. J. 74, 328 (1931).
    [CrossRef]
  3. P. F. A. Klinkenberg, “Analysis of the arc spectrum of lutitium,” Physica 21, 53–62 (1954).
    [CrossRef]
  4. P. Camus, F. S. Tomkins, “Absorption-line series in Lu i,” J. Phys. (Paris) 33, 197–201 (1972).
    [CrossRef]
  5. J. Anderson, Ph.D. dissertation (London University, London, 1956).
  6. E. H. Pinnington, “Zeeman effect analysis of the neutral spectrum of lutetium,” Can. J. Phys. 41, 1294–1305 (1963).
    [CrossRef]
  7. J. Verges, J. F. Wyart, “Infrared emission spectrum of lutetium and extended analysis of Lu i,” Phys. Scr. 17, 495–499 (1978).
    [CrossRef]
  8. J. F. Wyart, “Systematic study of even configurations in the neutral atoms of the platinum group,” Phys. Scr. 18, 87–95 (1978).
    [CrossRef]
  9. H. Figger, G. Wolber, “Precesion measurement of the hfs of 175Lu with the atomic beam magnetic resonance method,” Z. Phys. 264, 95–108 (1973).
    [CrossRef]
  10. J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
    [CrossRef]
  11. D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
    [CrossRef]
  12. A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
    [CrossRef]
  13. G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
    [CrossRef]
  14. W. F. Meggers, C. H. Corliss, B. F. Scribner, eds., Tables of Spectral Line Intensities, Arranged by Elements (U. S. Government Printing Office, Washington, D.C., 1975).
  15. R. Engleman, R. A. Keller, C. M. Miller, “Effect of optical saturation on hyperfine intensities in optogalvanic spectroscopy,” J. Opt. Soc. Am. B 2, 897–902 (1985).
    [CrossRef]

1987 (1)

G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
[CrossRef]

1985 (1)

1980 (1)

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

1979 (1)

A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
[CrossRef]

1978 (2)

J. Verges, J. F. Wyart, “Infrared emission spectrum of lutetium and extended analysis of Lu i,” Phys. Scr. 17, 495–499 (1978).
[CrossRef]

J. F. Wyart, “Systematic study of even configurations in the neutral atoms of the platinum group,” Phys. Scr. 18, 87–95 (1978).
[CrossRef]

1973 (1)

H. Figger, G. Wolber, “Precesion measurement of the hfs of 175Lu with the atomic beam magnetic resonance method,” Z. Phys. 264, 95–108 (1973).
[CrossRef]

1972 (1)

P. Camus, F. S. Tomkins, “Absorption-line series in Lu i,” J. Phys. (Paris) 33, 197–201 (1972).
[CrossRef]

1963 (1)

E. H. Pinnington, “Zeeman effect analysis of the neutral spectrum of lutetium,” Can. J. Phys. 41, 1294–1305 (1963).
[CrossRef]

1961 (1)

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

1954 (1)

P. F. A. Klinkenberg, “Analysis of the arc spectrum of lutitium,” Physica 21, 53–62 (1954).
[CrossRef]

1931 (1)

A. S. King, Astrophys. J. 74, 328 (1931).
[CrossRef]

1930 (1)

W. F. Meggers, B. F. Scribner, “Regularities in the spectra of lutetium,” J. Res. Nat. Bur. Stand. 5, 73–81 (1930).
[CrossRef]

Aepfelbach, G.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

Anderson, J.

J. Anderson, Ph.D. dissertation (London University, London, 1956).

Bauche, J.

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

Blaise, J.

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

Camus, P.

P. Camus, F. S. Tomkins, “Absorption-line series in Lu i,” J. Phys. (Paris) 33, 197–201 (1972).
[CrossRef]

Engleman, R.

Figger, H.

H. Figger, G. Wolber, “Precesion measurement of the hfs of 175Lu with the atomic beam magnetic resonance method,” Z. Phys. 264, 95–108 (1973).
[CrossRef]

Gerstenkorn, S.

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

Govindarajan, J.

G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
[CrossRef]

Keller, R. A.

King, A. S.

A. S. King, Astrophys. J. 74, 328 (1931).
[CrossRef]

Klinkenberg, P. F. A.

P. F. A. Klinkenberg, “Analysis of the arc spectrum of lutitium,” Physica 21, 53–62 (1954).
[CrossRef]

Kuhnert, A.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

Meggers, W. F.

W. F. Meggers, B. F. Scribner, “Regularities in the spectra of lutetium,” J. Res. Nat. Bur. Stand. 5, 73–81 (1930).
[CrossRef]

Miller, C. M.

Nunnemann, A.

A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
[CrossRef]

Pinnington, E. H.

E. H. Pinnington, “Zeeman effect analysis of the neutral spectrum of lutetium,” Can. J. Phys. 41, 1294–1305 (1963).
[CrossRef]

Rao, G. N.

G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
[CrossRef]

Reddy, M. N.

G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
[CrossRef]

Scribner, B. F.

W. F. Meggers, B. F. Scribner, “Regularities in the spectra of lutetium,” J. Res. Nat. Bur. Stand. 5, 73–81 (1930).
[CrossRef]

Tomkins, F. S.

P. Camus, F. S. Tomkins, “Absorption-line series in Lu i,” J. Phys. (Paris) 33, 197–201 (1972).
[CrossRef]

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

Verges, J.

J. Verges, J. F. Wyart, “Infrared emission spectrum of lutetium and extended analysis of Lu i,” Phys. Scr. 17, 495–499 (1978).
[CrossRef]

Wolber, G.

H. Figger, G. Wolber, “Precesion measurement of the hfs of 175Lu with the atomic beam magnetic resonance method,” Z. Phys. 264, 95–108 (1973).
[CrossRef]

Wyart, J. F.

J. Verges, J. F. Wyart, “Infrared emission spectrum of lutetium and extended analysis of Lu i,” Phys. Scr. 17, 495–499 (1978).
[CrossRef]

J. F. Wyart, “Systematic study of even configurations in the neutral atoms of the platinum group,” Phys. Scr. 18, 87–95 (1978).
[CrossRef]

Zimmermann, D.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
[CrossRef]

Zimmermann, P.

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
[CrossRef]

Astrophys. J. (1)

A. S. King, Astrophys. J. 74, 328 (1931).
[CrossRef]

Can. J. Phys. (1)

E. H. Pinnington, “Zeeman effect analysis of the neutral spectrum of lutetium,” Can. J. Phys. 41, 1294–1305 (1963).
[CrossRef]

Hyp. Int. (1)

G. N. Rao, J. Govindarajan, M. N. Reddy, “Optogalvanic spectroscopy sputtered atoms,” Hyp. Int. 38, 539–552 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (Paris) (1)

P. Camus, F. S. Tomkins, “Absorption-line series in Lu i,” J. Phys. (Paris) 33, 197–201 (1972).
[CrossRef]

J. Phys. Radium (1)

J. Blaise, J. Bauche, S. Gerstenkorn, F. S. Tomkins, “Détermination spectroscopique du spin 176Lu et des moments nucléaires magnétique et quadrupolaire de 175Lu et 176Lu,” J. Phys. Radium 22, 417–427 (1961).
[CrossRef]

J. Res. Nat. Bur. Stand. (1)

W. F. Meggers, B. F. Scribner, “Regularities in the spectra of lutetium,” J. Res. Nat. Bur. Stand. 5, 73–81 (1930).
[CrossRef]

Phys. Scr. (2)

J. Verges, J. F. Wyart, “Infrared emission spectrum of lutetium and extended analysis of Lu i,” Phys. Scr. 17, 495–499 (1978).
[CrossRef]

J. F. Wyart, “Systematic study of even configurations in the neutral atoms of the platinum group,” Phys. Scr. 18, 87–95 (1978).
[CrossRef]

Physica (1)

P. F. A. Klinkenberg, “Analysis of the arc spectrum of lutitium,” Physica 21, 53–62 (1954).
[CrossRef]

Z. Phys. (1)

H. Figger, G. Wolber, “Precesion measurement of the hfs of 175Lu with the atomic beam magnetic resonance method,” Z. Phys. 264, 95–108 (1973).
[CrossRef]

Z. Phys. A (2)

D. Zimmermann, P. Zimmermann, G. Aepfelbach, A. Kuhnert, “Isotope shift and hyperfine structure of the transition 5d6s2D3/2–5d 6s 6p4F3/2of 175Lu and 176Lu,” Z. Phys. A 295, 307–310 (1980).
[CrossRef]

A. Nunnemann, D. Zimmermann, P. Zimmermann, “Investigation of hyperfine structure and isotope shift of the 605.5 nm line of 176Lu by laser spectroscopy,” Z. Phys. A 290, 123–127 (1979).
[CrossRef]

Other (2)

W. F. Meggers, C. H. Corliss, B. F. Scribner, eds., Tables of Spectral Line Intensities, Arranged by Elements (U. S. Government Printing Office, Washington, D.C., 1975).

J. Anderson, Ph.D. dissertation (London University, London, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for Doppler-limited high-resolution OGS: HCL, hollow-cathode lamp; FOP, fast-overload protection circuit; FPI, Fabry–Perot interferometer; PD, photodiode; PMT, photomultiplier tube; H.V., high voltage.

Fig. 2
Fig. 2

Typical OGS spectrum of lutetium. Lutetium lines and the neon lines used for wavelength calibration are identified.

Fig. 3
Fig. 3

Typical hfs spectra of Lu i recorded using LOGS. Vertical bars indicate the positions of hyperfine components and their length proportional to the expected relative intensities. The components are identified by F quantum numbers from lower state to upper state, (a) Hfs spectrum of the Lu i transition λ = 6041.66 Å. The excitation laser power was 55 mW. (b) Hfs spectrum of the Lu i transition λ = 6084.17 Å. The excitation laser power was 40 mW. All the hfs components are well resolved.

Fig. 4
Fig. 4

Hyperfine-level scheme of the Lu i transition λ = 6041.66 Å. The theoretical intensity ratios expected for the hfs components are given at the bottom.

Fig. 5
Fig. 5

Fitted hfs spectrum of λ = 6041.66 Å. Experimental data are denoted by open circles.

Fig. 6
Fig. 6

Saturation of hfs components with laser power. The hfs components of the λ = 6041.66 Å transitions are presented.

Tables (2)

Tables Icon

Table 1 Spectral Lines of Lu i Observed in OGS along with the Observed Relative Intensities

Tables Icon

Table 2 Hyperfine Coupling Constants of 175Lu i Determined by LOGSa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = h A 2 K + h B 4 ( 3 / 2 ) K ( K + 1 ) - 2 I ( I + 1 ) J ( J + 1 ) I ( 2 I - 1 ) J ( 2 J - 1 ) ,
A = μ I H J ( 0 ) h I J ,             B = e 2 Q I q J ( 0 ) h ,
Δ ν 12 = A K 1 - K 2 2 + 3 B [ K 1 ( K 1 + 1 ) - K 2 ( K 2 + 1 ) ] 8 I J ( 2 J - 1 ) ( 2 I - 1 ) .

Metrics