Abstract

We present a technique for determining coherence times of single femtosecond or picosecond pulses by a holographic method that measures the diffraction efficiency of a holographically recorded, time dispersed interference pattern. The results are discussed in terms of recent transient grating interpretations that use fourth-order coherence functions. Picosecond coherence times are measured for single 532-nm pulses, short-cavity dye-laser (SCDL) pulses, and a train of cw mode-locked dye-laser pulses. Nonrandom background coherence effects in a Nd:YAG (532-nm) laser are observed with both four-wave mixing measurements of average coherence and single-shot holographic measurements under operating conditions of spectral broadening. The SCDL has a coherence time of 2.8 psec, and both techniques measured random background coherence artifacts over the 22-psec pulse duration.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
    [Crossref]
  2. R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).
  3. R. Trebino, E. K. Gustafson, and A. E. Siegman, “Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources,” J. Opt. Soc. Am. B 3, 1295 (1986).
    [Crossref]
  4. P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
    [Crossref]
  5. W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
    [Crossref]
  6. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121 (1978).
    [Crossref] [PubMed]
  7. N. Abramson, “Light-in-flight recording: high-speed holographic motion pictures of ultrafast phenomena,” Appl. Opt. 22, 215 (1983).
    [Crossref] [PubMed]
  8. F. Quercioli and G. Molesini, “White light-in-flight holography,” Appl. Opt. 24, 3406 (1985).
    [Crossref] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), pp. 319–322.
  10. P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), p. 80.
  11. E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12, i957 (1973).
    [Crossref]
  12. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

1989 (1)

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

1986 (2)

R. Trebino, E. K. Gustafson, and A. E. Siegman, “Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources,” J. Opt. Soc. Am. B 3, 1295 (1986).
[Crossref]

P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
[Crossref]

1985 (1)

1983 (1)

1980 (2)

H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
[Crossref]

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

1978 (1)

1973 (1)

E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12, i957 (1973).
[Crossref]

Abramson, N.

Abramson, N. H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

Baltrameyunas, R.

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), pp. 319–322.

Chang, B. J.

E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12, i957 (1973).
[Crossref]

Danelyus, R.

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Eichler, H. J.

H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
[Crossref]

Fauchet, P. M.

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
[Crossref]

Gong, T.

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

Gustafson, E. K.

Hariharan, P.

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), p. 80.

Klein, U.

H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
[Crossref]

Langhans, D.

H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
[Crossref]

Leith, E. N.

E. N. Leith and B. J. Chang, “Space-invariant holography with quasi-coherent light,” Appl. Opt. 12, i957 (1973).
[Crossref]

Lion, L.

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

Molesini, G.

Nighan, W. L.

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
[Crossref]

Piskarskas, A.

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Pyatrauskas, M.

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Quercioli, F.

Serafin, J.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

Siegman, A. E.

Spears, K. G.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

Trebino, R.

P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
[Crossref]

R. Trebino, E. K. Gustafson, and A. E. Siegman, “Fourth-order partial-coherence effects in the formation of integrated-intensity gratings with pulsed light sources,” J. Opt. Soc. Am. B 3, 1295 (1986).
[Crossref]

Valtkus, Yu.

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), pp. 319–322.

Zhu, X.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

AIP Conf. Proc. (1)

P. M. Fauchet, W. L. Nighan, and R. Trebino, “Characterization of ultrashort laser pulses by the method of self-diffraction,” AIP Conf. Proc. 146, 588 (1986).
[Crossref]

Appl. Opt. (3)

Appl. Phys. (1)

H. J. Eichler, U. Klein, and D. Langhans, “Coherence time measurement of picosecond pulses by a light-induced grating method,” Appl. Phys. 21, 215 (1980).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

W. L. Nighan, T. Gong, L. Lion, and P. M. Fauchet, “Self-diffraction: a new method for characterization of ultrashort laser pulses,” Opt. Commun. 69, 339 (1989).
[Crossref]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

R. Baltrameyunas, Yu. Valtkus, R. Danelyus, M. Pyatrauskas, and A. Piskarskas, “Applications of dynamic holography in determination of coherence times of single picosecond light pulses,” Sov. J. Quantum Electron. 12, 215 (1980).

Other (3)

M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1959), pp. 319–322.

P. Hariharan, Optical Holography (Cambridge U. Press, Cambridge, 1984), p. 80.

K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, “Chronocoherent imaging for medicine,” IEEE Trans. Biomed. Eng. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustrating the wave-vector relationship for making a single-pulse holographic interference pattern.

Fig. 2
Fig. 2

Schematic of the experimental arrangement for making single-pulse holographic interference patterns.

Fig. 3
Fig. 3

Curves of diffraction efficiency versus computed time delay between object beam and reference beam. Crosses indicate experimental data, and solid curves are nonlinear least-squares fits to Gaussian curves. The computation of time delay used the film displacement and beam crossing angle (see text): (a) is for the 532-nm pulse at low power, (b) is for the SCDL pulse, (c) is for the cw mode-locked dye-laser pulses, (d) is similar to (a) but the Nd:YAG laser is at full power.

Fig. 4
Fig. 4

Schematic of the setup for the four-wave mixing experiment.

Fig. 5
Fig. 5

Experimental curves of diffraction efficiency versus optical time delay: (a) is for the 532-nm pulses; (b) is for the SCDL pulses. Crosses indicate experimental data; the curves are fitted by relation (21) of the text.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

A 1 = A 10 R 1 ( r ) T 1 ( t , k ^ 10 · r ) Φ 1 ( ω t , k 1 · r ) ,
A 2 = A 20 R 2 ( r ) T 2 ( t , k ^ 20 · r ) Φ ( ω t , k 2 · r ) ,
T 1 ( t , k ^ 10 · r ) = exp { - b 2 [ t + ( x sin α + y cos α ) / c ] 2 } ,
T 2 ( t , k ^ 20 · r ) = exp { - b 2 [ t - ( x sin α - y cos α ) / c ] 2 } ,
Φ 1 ( t , k 1 · r ) = exp { - i ω [ t + ( x sin α + y cos α ) / c ] 2 } ,
Φ 2 ( t , k 2 · r ) = exp { - i ω [ t - ( x sin α - y cos α ) / c ] 2 } .
E 1 = - A 1 2 d t | y = 0 = - A 10 2 R 1 2 T 1 2 d t | y = 0 = 2 π 2 b A 10 2 R 1 2 | y = 0 .
E 2 = - A 20 2 R 2 2 T 2 2 d t | y = 0 = 2 π 2 b A 20 2 R 2 2 | y = 0 .
- ( A 1 * A 2 + A 1 A 2 * ) d t | y = 0 = A 10 A 20 R 1 R 2 - T 1 T 2 { exp [ i ω ( 2 x c sin α ) ] + exp [ - i ω ( 2 x c sin α ) ] } | y = 0 d t = 2 π b A 10 A 20 R 1 R 2 × exp ( - 2 b 2 x 2 sin 2 α c 2 ) cos ( 2 ω x sin α c ) | y = 0 .
E = - A 1 + A 2 2 d t | y = 0 = - A 1 2 d t | y = 0 + - A 2 2 d t | y = 0 + - ( A 1 * A 2 + A 1 A 2 * ) d t | y = 0 = E 1 + E 2 + 2 E 1 E 2 μ 12 cos ( k Δ ϕ ) ,
V ( Δ ϕ ) = E max - E min E max + E min = Q 2 + S 2 P ,
P = 2 - j ( g ) d g ,
Q ( Δ ϕ ) = 2 - j ( g ) μ 12 cos ( g Δ ϕ ) d g ,
S ( Δ ϕ ) = 2 - j ( g ) μ 12 sin ( g Δ ϕ ) d g .
P = 2 π m j 0 , Q = 2 π m j 0 exp [ - 2 b 2 x 2 sin 2 α c 2 - ( Δ ϕ ) 2 4 m 2 ] , S = 0 , V = exp [ - ( b 2 2 c 2 + 1 4 m 2 ) ( Δ ϕ ) 2 ] .
η V 2 = exp [ - 2 ( b 2 2 c 2 + 1 4 m 2 ) ( Δ ϕ ) 2 ]
η exp [ - 2 ln 2 ( t d / t p ) 2 - 2 ln 2 ( t d / t c ) 2 ] ,
η exp [ - 2 ln 2 ( t d / t p ) 2 - π ( t d / t c ) 2 ] .
t c = π / ln 2 Δ x ( 1 / c ) sin α ,
t c = 2 + π / ln 2 Δ x ( 1 / c ) sin α ,
η 2 ln 2 π ( t c t p ) exp ( - 2 ln 2 t d 2 / t p 2 ) + exp ( - π t d 2 / t c 2 ) ,             t c t p .

Metrics