Abstract

A lattice-dynamical calculation applicable to crystals of any structural complexity and any symmetry (that permits optical activity) reveals three mechanisms causing optical activity in crystals: electric-dipole–magnetic-dipole interference, electric-dipole–electric-quadrupole interference, and first-order wave-vector dispersion of the bonding forces. Only the last mechanism was found by Born and Huang from lattice dynamics, while quantum-mechanical derivations have produced only the other two. Thus the present derivation removes a discrepancy between these two approaches, which, since they deal with a long-wavelength phenomenon, should produce closely comparable formulas. The first two mechanisms give terms in the rotatory power proportional to ω2/(ωi2ω2), whereas the third mechanism gives terms proportional to ω2/(ωi2ω2) (ωj2ω2). Both types of term have been shown to be necessary to fit frequency dispersion in particular crystals. Thus the present theory produces all the known mechanisms along with the needed dispersion from a general, unified, basic approach.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (61)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription