Abstract

A high-sensitivity spectroscopic system has been constructed with a GaAlAs diode laser by using two-tone frequency-modulation spectroscopy. We have demonstrated an absorption sensitivity of 3 × 10−7 in a 0.84-Hz bandwidth by using the Doppler-broadened water vapor absorption line at 12 238.32 cm−1. The sensitivity is limited by laser excess noise and is approximately five times less than the sensitivity expected on the basis of detector noise.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
    [CrossRef]
  2. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorption and dispersions,” Opt. Lett. 5, 15 (1980).
    [CrossRef]
  3. T. F. Gallagher, R. Kachru, F. Gounand, G. C. Bjorklund, W. Lenth, “Frequency-modulation spectroscopy with a pulsed dye laser,” Opt. Lett. 7, 28 (1981).
    [CrossRef]
  4. W. Lenth, C. Ortiz, G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for fast absorption measurements,” Opt. Lett. 6, 351 (1981).
    [CrossRef] [PubMed]
  5. G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145 (1983).
    [CrossRef]
  6. M. Romagnoli, M. D. Levenson, G. C. Bjorklund, “Frequency-modulation polarization spectroscopy,” Opt. Lett. 8, 635 (1983).
    [CrossRef] [PubMed]
  7. N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy at 3302 Å,” Opt. Lett. 8, 157 (1983).
    [CrossRef] [PubMed]
  8. N. H. Tran, R. Kachru, P. Pillet, H. B. van Lindenvan den Heuvell, T. F. Gallagher, J. P. Watjen, “Frequency-modulation spectroscopy with a pulsed dye laser: experimental investigations of sensitivity and useful features,” Appl. Opt. 23, 1353 (1984).
    [CrossRef]
  9. M. Gehrtz, G. C. Bjorklund, E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510 (1985).
    [CrossRef]
  10. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575 (1983).
    [CrossRef] [PubMed]
  11. W. Lenth, M. Gehrtz, “High-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263 (1985).
    [CrossRef]
  12. M. Gehrtz, W. Lenth, A. T. Young, H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett. 11, 132 (1986).
    [CrossRef] [PubMed]
  13. G. R. Janik, C. B. Carlisle, T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070 (1986).
    [CrossRef]
  14. D. E. Cooper, J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606 (1986).
    [CrossRef] [PubMed]
  15. D. E. Cooper, R. E. Warren, “Two-tone optical heterodyne spectroscopy with diode laser: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470 (1987).
    [CrossRef]
  16. D. E. Cooper, R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode laser: a comparison of single-tone and two-tone techniques,” Appl. Opt. 26, 3726 (1987).
    [CrossRef] [PubMed]
  17. N.-Y. Chou, G. W. Sachse, “Single-tone and two-tone AM-FM spectral calculations for tunable diode laser absorption spectroscopy,” Appl. Opt. 26, 3584 (1987).
    [CrossRef] [PubMed]
  18. L. G. Wang, H. Riris, C. B. Carlisle, T. F. Gallagher, “Comparison of approaches to modulation spectroscopy with GaAlAs semiconductor lasers: application to water vapor,” Appl. Opt. 27, 2071 (1988).
    [CrossRef] [PubMed]
  19. C. R. Webster, “Brewster plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable laser absorption,” J. Opt. Soc. Am. B 2, 1464 (1985).
    [CrossRef]
  20. D. E. Cooper, Electro-Optics System Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (personal communication, 1988).
  21. J. A. Silver, A. C. Stanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt. 27, 1914 (1988).
    [CrossRef] [PubMed]
  22. J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).
  23. K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
    [CrossRef]

1988 (2)

1987 (3)

1986 (3)

1985 (3)

1984 (1)

1983 (5)

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575 (1983).
[CrossRef] [PubMed]

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145 (1983).
[CrossRef]

M. Romagnoli, M. D. Levenson, G. C. Bjorklund, “Frequency-modulation polarization spectroscopy,” Opt. Lett. 8, 635 (1983).
[CrossRef] [PubMed]

N. H. Tran, R. Kachru, T. F. Gallagher, J. P. Watjen, G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy at 3302 Å,” Opt. Lett. 8, 157 (1983).
[CrossRef] [PubMed]

K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
[CrossRef]

1982 (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

1981 (2)

1980 (1)

Bjorklund, G. C.

Carlisle, C. B.

Chou, N.-Y.

Cooper, D. E.

Gallagher, T. F.

Gehrtz, M.

Gounand, F.

Harder, Ch.

K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
[CrossRef]

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Janik, G. R.

Johnston, H. S.

Kachru, R.

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Lenth, W.

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145 (1983).
[CrossRef]

M. Romagnoli, M. D. Levenson, G. C. Bjorklund, “Frequency-modulation polarization spectroscopy,” Opt. Lett. 8, 635 (1983).
[CrossRef] [PubMed]

Namkung, J. S.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145 (1983).
[CrossRef]

W. Lenth, C. Ortiz, G. C. Bjorklund, “Pulsed frequency-modulation spectroscopy as a means for fast absorption measurements,” Opt. Lett. 6, 351 (1981).
[CrossRef] [PubMed]

Park, J. H.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Pickett, H. M.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Pillet, P.

Richardson, D. J.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Rinsland, C. P.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Riris, H.

Romagnoli, M.

Rothman, L. S.

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Sachse, G. W.

Silver, J. A.

Stanton, A. C.

Tran, N. H.

Vahala, K.

K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
[CrossRef]

van Lindenvan den Heuvell, H. B.

Wang, L. G.

Warren, R. E.

Watjen, J. P.

Webster, C. R.

Whittaker, E. A.

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Yariv, A.

K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
[CrossRef]

Young, A. T.

Appl. Opt. (5)

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of line shapes and signal-to-noise analysis,” Appl. Phys. B 32, 145 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

W. Lenth, M. Gehrtz, “High-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1263 (1985).
[CrossRef]

K. Vahala, Ch. Harder, A. Yariv, “Observation of relaxation resonance effects in the field spectrum of semiconductor lasers,” Appl. Phys. Lett. 42, 211 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, “Direct frequency modulation in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (8)

Other (2)

D. E. Cooper, Electro-Optics System Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025 (personal communication, 1988).

J. H. Park, L. S. Rothman, C. P. Rinsland, H. M. Pickett, D. J. Richardson, J. S. Namkung, “Atlas of absorption lines from 0 to 17 900 cm−1,” NASA Ref. Publ. 1188 (NASA, Washington, D.C., 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for two-tone FMS: F×2, frequency doubler; DT, detector; DC Amp., dc amplifier; A/D, analog-to-digital converter; D/A, digital-to-analog converter.

Fig. 2
Fig. 2

Interference fringes from an talon effect (260-MHz free spectral range) in the optical system measured in two-tone FMS with the speaker on and off, showing the dramatic reduction in amplitude with the speaker on.

Fig. 3
Fig. 3

Two-tone FMS signal of three water vapor absorption lines: 0.48% absorption at 12 238.3 cm−1, 0.35% absorption at 12 237.5 cm−1, and 1.26% absorption at 12 236.6 cm−1. The figures in both circles are enlarged vertically by a factor of 80 and horizontally by a factor of 3.

Fig. 4
Fig. 4

Direct absorption signals of three water vapor absorption lines (same lines as in Fig. 3).

Fig. 5
Fig. 5

The optical spectrum of a frequency-modulated GaAlAs diode laser obtained by using a Fabry-Perot étalon with a free spectral range of 15 GHz.

Fig. 6
Fig. 6

The calculated two-tone FM signal versus the FM index.

Tables (3)

Tables Icon

Table 1 Assignments of Three Water Vapor Absorption Linesa

Tables Icon

Table 2 Comparison of the Measured SNR and Detection Sensitivities at Different FM Index for a 0.48% Water Vapor Absorption Line

Tables Icon

Table 3 Experimental Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = i s ( t ) + i n ( t ) + i b ( t ) ;
SNR = CNR / ( 1 + CNR / SBR ) .
CNR = i s ( t ) 2 / Var ( i n ) .
SBR = i s ( t ) 2 / Var ( i b ) .
Var ( i b ) = ( e η / h ν ) 2 2 M 4 σ P 0 2
SNR CNR = CNR 0 Q ( α ) 2 ,
Q ( α ) - 2 α ( 0 ) n J n 2 ( β ) J n - 1 2 ( β ) ,
α min 1 2 n J n 2 ( β ) J n - 1 2 ( β ) CNR 0 .
R e = e η / h ν

Metrics