Abstract

Cross-phase modulation (XPM) and induced focusing occur when copropagating ultrafast pulses interact in a nonlinear medium. XPM and induced focusing are investigated as new techniques to control the spectral, temporal, and spatial properties of ultrafast pulses with femtosecond time response. In this paper we review our most recent measurements on (1) induced spectral broadening in BK7 glass, (2) induced frequency shift of copropagating pulses in optical fibers, (3) XPM-stimulated Raman scattering in optical fibers, (4) XPM second-harmonic generation in ZnSe crystals, and (5) induced focusing of Raman pulses in optical fibers.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
    [CrossRef]
  2. R. R. Alfano, Q. Li, T. Jimbo, J. Manassah, P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626–628 (1986).
    [CrossRef] [PubMed]
  3. J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).
  4. D. Schadt, B. Jaskorzynska, U. Osterberg, “Numerical study on combined stimulated Raman scattering and self-phase modulation in optical fibers influenced by walk-off between pump and Stokes pulses,” J. Opt. Soc. Am. B 3, 1257–1260 (1986).
    [CrossRef]
  5. D. Schadt, B. Jaskorzynska, “Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walkoff in optical fibers,” J. Opt. Soc. Am. B 4, 856–862 (1987).
    [CrossRef]
  6. M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett. 12, 625–627 (1987).
    [CrossRef] [PubMed]
  7. M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Amplifier/compressor fiber Raman lasers,” Opt. Lett. 12, 814–816 (1987).
    [CrossRef] [PubMed]
  8. J. T. Manassah, “Induced phase modulation of the Raman pulse in optical fibers,” Appl. Opt. 26, 3747–3749 (1987).
    [CrossRef] [PubMed]
  9. J. T. Manassah, “Time-domain characteristics of a Raman pulse in the presence of a pump,” Appl. Opt. 26, 3750–3751 (1987).
    [CrossRef]
  10. R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross-phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
    [CrossRef] [PubMed]
  11. P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
    [CrossRef]
  12. A. Hook, D. Anderson, M. Lisak, “Solitonlike Stokes pulses in stimulated Raman scattering,” Opt. Lett. 13, 1114–1116 (1988).
    [CrossRef] [PubMed]
  13. R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
    [CrossRef] [PubMed]
  14. R. R. Alfano, P. P. Ho, “Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,” IEEE J. Quantum Electron. QE-24, 351–364 (1988).
    [CrossRef]
  15. P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).
  16. J. T. Manassah, “Amplitude and phase of a pulsed second-harmonic signal,” J. Opt. Soc. Am. B 4, 1235–1240 (1987).
    [CrossRef]
  17. J. T. Manassah, O. R. Cockings, “Induced phase modulation of a generated second-harmonic signal,” Opt. Lett. 12, 1005–1007 (1987).
    [CrossRef] [PubMed]
  18. P. L. Baldeck, R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” IEEE J. Lightwave Technol. LT-5, 1712–1715 (1987).
    [CrossRef]
  19. G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” submitted to Phys. Rev. A.
  20. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
    [CrossRef] [PubMed]
  21. G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A (to be published).
  22. D. Schadt, B. Jaskorzynska, “Generation of short pulses from cw light by influence of cross-phase modulation in optical fibres,” Electron. Lett. 23, 1091–1092 (1987).
  23. P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Observation of modulation instability in the normal-dispersion regime of single-mode optical fibers,” submitted to Opt. Lett.
  24. A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulation instability in optical fibers,” Opt. Lett. 13, 901–903 (1988).
    [CrossRef] [PubMed]
  25. A. S. Gouveia-Neto, M. E. Faldon, J. R. Taylor, “Raman amplification of modulation instability and solitary-wave formation,” Opt. Lett. 12, 1029–1031 (1988).
    [CrossRef]
  26. S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871–873 (1988).
    [CrossRef] [PubMed]
  27. B. Jaskorzynska, D. Schadt, “All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion,” IEEE J. Quantum Electron. QE-24, 2117–2120 (1988).
    [CrossRef]
  28. J. T. Manassah, “Pulse compression of an induced-phase modulated weak signal,” Opt. Lett. 13, 752–755 (1988).
    [CrossRef] [PubMed]
  29. G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
    [CrossRef] [PubMed]
  30. P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
    [CrossRef]
  31. D. Schadt, B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2378 (1988).
    [CrossRef]
  32. P. L. Baldeck, F. Raccah, R. R. Alfano, “Observation of self-focusing in optical fibers with picosecond pulses,” Opt. Lett. 12, 588–589 (1987).
    [CrossRef] [PubMed]
  33. Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).
  34. A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

1989

1988

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

D. Schadt, B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2378 (1988).
[CrossRef]

A. Hook, D. Anderson, M. Lisak, “Solitonlike Stokes pulses in stimulated Raman scattering,” Opt. Lett. 13, 1114–1116 (1988).
[CrossRef] [PubMed]

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

R. R. Alfano, P. P. Ho, “Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,” IEEE J. Quantum Electron. QE-24, 351–364 (1988).
[CrossRef]

A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulation instability in optical fibers,” Opt. Lett. 13, 901–903 (1988).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, M. E. Faldon, J. R. Taylor, “Raman amplification of modulation instability and solitary-wave formation,” Opt. Lett. 12, 1029–1031 (1988).
[CrossRef]

S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871–873 (1988).
[CrossRef] [PubMed]

B. Jaskorzynska, D. Schadt, “All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion,” IEEE J. Quantum Electron. QE-24, 2117–2120 (1988).
[CrossRef]

J. T. Manassah, “Pulse compression of an induced-phase modulated weak signal,” Opt. Lett. 13, 752–755 (1988).
[CrossRef] [PubMed]

1987

J. T. Manassah, “Amplitude and phase of a pulsed second-harmonic signal,” J. Opt. Soc. Am. B 4, 1235–1240 (1987).
[CrossRef]

J. T. Manassah, O. R. Cockings, “Induced phase modulation of a generated second-harmonic signal,” Opt. Lett. 12, 1005–1007 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” IEEE J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[CrossRef] [PubMed]

D. Schadt, B. Jaskorzynska, “Generation of short pulses from cw light by influence of cross-phase modulation in optical fibres,” Electron. Lett. 23, 1091–1092 (1987).

D. Schadt, B. Jaskorzynska, “Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walkoff in optical fibers,” J. Opt. Soc. Am. B 4, 856–862 (1987).
[CrossRef]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett. 12, 625–627 (1987).
[CrossRef] [PubMed]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Amplifier/compressor fiber Raman lasers,” Opt. Lett. 12, 814–816 (1987).
[CrossRef] [PubMed]

J. T. Manassah, “Induced phase modulation of the Raman pulse in optical fibers,” Appl. Opt. 26, 3747–3749 (1987).
[CrossRef] [PubMed]

J. T. Manassah, “Time-domain characteristics of a Raman pulse in the presence of a pump,” Appl. Opt. 26, 3750–3751 (1987).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross-phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
[CrossRef]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, F. Raccah, R. R. Alfano, “Observation of self-focusing in optical fibers with picosecond pulses,” Opt. Lett. 12, 588–589 (1987).
[CrossRef] [PubMed]

1986

1985

J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).

1981

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

1980

J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[CrossRef] [PubMed]

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A (to be published).

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Observation of modulation instability in the normal-dispersion regime of single-mode optical fibers,” submitted to Opt. Lett.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” submitted to Phys. Rev. A.

Aleksandrov, I. V.

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

Alfano, R. R.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

R. R. Alfano, P. P. Ho, “Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,” IEEE J. Quantum Electron. QE-24, 351–364 (1988).
[CrossRef]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” IEEE J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross-phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
[CrossRef]

P. L. Baldeck, F. Raccah, R. R. Alfano, “Observation of self-focusing in optical fibers with picosecond pulses,” Opt. Lett. 12, 588–589 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. Li, T. Jimbo, J. Manassah, P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626–628 (1986).
[CrossRef] [PubMed]

J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).

J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” submitted to Phys. Rev. A.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A (to be published).

P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Observation of modulation instability in the normal-dispersion regime of single-mode optical fibers,” submitted to Opt. Lett.

Anderson, D.

Baldeck, P. L.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
[CrossRef] [PubMed]

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

P. L. Baldeck, F. Raccah, R. R. Alfano, “Observation of self-focusing in optical fibers with picosecond pulses,” Opt. Lett. 12, 588–589 (1987).
[CrossRef] [PubMed]

R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross-phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
[CrossRef]

P. L. Baldeck, R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” IEEE J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” submitted to Phys. Rev. A.

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Observation of modulation instability in the normal-dispersion regime of single-mode optical fibers,” submitted to Opt. Lett.

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A (to be published).

Belic, M.

J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Cockings, O. R.

Dianov, E. M.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Faldon, M. E.

Gersten, J.

J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Gouveia-Neto, A. S.

Grudinin, A. B.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Ho, P. P.

R. R. Alfano, P. P. Ho, “Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,” IEEE J. Quantum Electron. QE-24, 351–364 (1988).
[CrossRef]

R. R. Alfano, P. L. Baldeck, F. Raccah, P. P. Ho, “Cross-phase modulation measured in optical fibers,” Appl. Opt. 26, 3491–3492 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
[CrossRef]

R. R. Alfano, Q. Li, T. Jimbo, J. Manassah, P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626–628 (1986).
[CrossRef] [PubMed]

J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).

P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).

Hook, A.

Islam, M. N.

Jaskorzynska, B.

Ji, D.

P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).

Jimbo, T.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. Li, T. Jimbo, J. Manassah, P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626–628 (1986).
[CrossRef] [PubMed]

Khaidarov, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Korbkin, D. V.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Li, Q.

Lisak, M.

Manassah, J.

Manassah, J. T.

Mollenauer, L. F.

Mustafa, M.

J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).

Nesterova, Z. V.

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

Osterberg, U.

Polnitskii, A. A.

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

Prokhorov, A. M.

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Raccah, F.

Sattarov, D. K.

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

Schadt, D.

Shang, H. T.

Simson, J. R.

Sombra, A. S. B.

Stegeman, G. I.

Stolen, R. H.

Taylor, J. R.

Trillo, S.

Wabnitz, S.

Wang, Q. Z.

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).

Wigley, P. G. J.

Wright, E. M.

Appl. Opt.

Appl. Phys. Lett.

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Induced-frequency shift of copropagating pulses,” Appl. Phys. Lett. 52, 1939 (1988).
[CrossRef]

Electron. Lett.

D. Schadt, B. Jaskorzynska, “Generation of short pulses from cw light by influence of cross-phase modulation in optical fibres,” Electron. Lett. 23, 1091–1092 (1987).

IEEE J. Lightwave Technol.

P. L. Baldeck, R. R. Alfano, “Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers,” IEEE J. Lightwave Technol. LT-5, 1712–1715 (1987).
[CrossRef]

IEEE J. Quantum Electron.

B. Jaskorzynska, D. Schadt, “All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion,” IEEE J. Quantum Electron. QE-24, 2117–2120 (1988).
[CrossRef]

R. R. Alfano, P. P. Ho, “Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation,” IEEE J. Quantum Electron. QE-24, 351–364 (1988).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

Z. V. Nesterova, I. V. Aleksandrov, A. A. Polnitskii, D. K. Sattarov, “Propagation characteristics of high power ultrashort pulses in multimode optical fibers,” JETP Lett. 34, 371 (1981).

A. B. Grudinin, E. M. Dianov, D. V. Korbkin, A. M. Prokhorov, D. V. Khaidarov, “Nonlinear mode coupling in multimode optical fibers; excitation of femtosecond-range stimulated-Raman-scattering solitons,” JETP Lett. 47, 356–359 (1988).

Opt. Lett.

P. L. Baldeck, F. Raccah, R. R. Alfano, “Observation of self-focusing in optical fibers with picosecond pulses,” Opt. Lett. 12, 588–589 (1987).
[CrossRef] [PubMed]

J. T. Manassah, “Pulse compression of an induced-phase modulated weak signal,” Opt. Lett. 13, 752–755 (1988).
[CrossRef] [PubMed]

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers,” Opt. Lett. 14, 137–139 (1989).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, M. E. Faldon, A. S. B. Sombra, P. G. J. Wigley, J. R. Taylor, “Subpicosecond-pulse generation through cross-phase-modulation-induced modulation instability in optical fibers,” Opt. Lett. 13, 901–903 (1988).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, M. E. Faldon, J. R. Taylor, “Raman amplification of modulation instability and solitary-wave formation,” Opt. Lett. 12, 1029–1031 (1988).
[CrossRef]

S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871–873 (1988).
[CrossRef] [PubMed]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Cross-phase modulation in optical fibers,” Opt. Lett. 12, 625–627 (1987).
[CrossRef] [PubMed]

M. N. Islam, L. F. Mollenauer, R. H. Stolen, J. R. Simson, H. T. Shang, “Amplifier/compressor fiber Raman lasers,” Opt. Lett. 12, 814–816 (1987).
[CrossRef] [PubMed]

J. T. Manassah, O. R. Cockings, “Induced phase modulation of a generated second-harmonic signal,” Opt. Lett. 12, 1005–1007 (1987).
[CrossRef] [PubMed]

R. R. Alfano, Q. Li, T. Jimbo, J. Manassah, P. P. Ho, “Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse,” Opt. Lett. 11, 626–628 (1986).
[CrossRef] [PubMed]

A. Hook, D. Anderson, M. Lisak, “Solitonlike Stokes pulses in stimulated Raman scattering,” Opt. Lett. 13, 1114–1116 (1988).
[CrossRef] [PubMed]

Phys. Lett.

J. T. Manassah, M. Mustafa, R. R. Alfano, P. P. Ho, “Induced supercontinuum and steepening of an ultrafast laser pulse,” Phys. Lett. 113A, 242–247 (1985).

Phys. Rev. A

R. R. Alfano, Q. Z. Wang, T. Jimbo, P. P. Ho, “Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals,” Phys. Rev. A 35, 459–462 (1987).
[CrossRef] [PubMed]

J. Gersten, R. R. Alfano, M. Belic, “Combined stimulated Raman scattering and continuum self-phase modulation,” Phys. Rev. A 21, 1222–1224 (1980).
[CrossRef]

Phys. Rev. Lett.

G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
[CrossRef] [PubMed]

Rev. Phys. Appl.

P. L. Baldeck, P. P. Ho, R. R. Alfano, “Effects of self induced, and cross phase modulations on the generation of picosecond and femtosecond white light supercontinua,” Rev. Phys. Appl. 22, 1677–1694 (1987).
[CrossRef]

Other

P. P. Ho, Q. Z. Wang, D. Ji, R. R. Alfano, “Propagation of harmonic cross-phase-modulation pulses in ZnSe,” Appl. Phys. Lett. (to be published).

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Modulation instability induced by cross-phase modulation in optical fibers,” Phys. Rev. A (to be published).

G. P. Agrawal, P. L. Baldeck, R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” submitted to Phys. Rev. A.

P. L. Baldeck, R. R. Alfano, G. P. Agrawal, “Observation of modulation instability in the normal-dispersion regime of single-mode optical fibers,” submitted to Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Influence of XPM, walkoff, and input time delay on the spectrum of a probe pulse from Eqs. (5) with E12E22. ϕ = (ω2/c)n2E12Lw, δ = z/Lw, and τd are the XPM, walkoff, and input time-delay parameters, respectively. (a) Reference spectrum with no XPM, i.e., ϕ = 0; (b) XPM in the absence of walkoff, i.e., ϕ = 50 and δ = 0; (c) XPM, total walkoff, and no initial time delay, i.e., ϕ = 50, δ = −5, and τd = 0; (d) XPM and initial time delay to compensate for the walkoff, i.e., ϕ = 50, δ = −5, and τd = 5; (e) XPM and symmetrical partial walkoff, i.e., ϕ = 50, δ = −3, and τd = 1.5; (f) XPM and symmetric total walkoff, i.e., ϕ = 50, δ = −5, and τd = 2.5.

Fig. 2
Fig. 2

Intensities of the induced ultrafast supercontinuum pulse (IUSP) and the ultrafast supercontinuum pulse (USP). Each data point was an average of ~20 laser shots and was corrected for the detector, filter, and spectrometer spectral sensitivity. Triangles, IUSP (F1, 3–75); circles, USP from 527 nm (F1, HA30). USP from 1054 nm, which is not shown here, was ≈1% of the IUSP signal. The measured 527-nm probe pulse was approximately 5 × 10 counts in this arbitrary unit scale. The error bar of each data point is approximately. ±20%.2

Fig. 3
Fig. 3

XPM effects on spectra of green 532-nm pulses: (a) reference spectrum (no copropagating infrared pulse), (b) infrared and green pulses overlapped at the fiber input, (c) infrared pulse delayed by 80-psec at the fiber input.30

Fig. 4
Fig. 4

Induced-wavelength shift of green 532-nm pulses as a function of the input time delay between 532-nm pulses and infrared 1064-nm pulses at the input of a 1-m-long optical fiber. Circles are experimental points. The solid curve is the theoretical prediction.30

Fig. 5
Fig. 5

Measured emission spectra of 25-psec laser pulses of different energies at 532-nm wavelength propagated through a 10-m-long single-mode glass fiber. The 544.5-nm peaks correspond to the peaks of the first Stokes Raman line.10

Fig. 6
Fig. 6

Temporal profile and propagation delay time of (a) incident 1054-nm light; (b) SHG-XPM signal of all visible spectra; (c), (d) selected 530- and 550-nm lines from SHG-XPM of a 22-nm-long ZnSe crystal measured by a 2-psec resolution streak camera system. The reference time corresponds to a laser pulse traveling through air without the crystal. The right-hand side of the time scale is the leading time. The vertical scale is an arbitrary intensity scale.14

Fig. 7
Fig. 7

Intensity distributions at the output of a large-core optical fiber: (a) input pulses of low energies (E < 1 nJ), (b) input pulses of high energies (E > 10 nJ), (c) same as (b) with an additional narrow-band filter centered at λ = 550 nm.32

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

× × E = - μ 0 ( D / t ) ,
D = E + P NL ,
P NL ( r , z , t ) = χ ( 3 ) E 3 ( r , z , t ) .
E ( r , z , t ) = ½ { A 1 ( r , z , t ) exp [ i ( ω 1 t - β 1 z ) ] + A 2 ( r , z , t ) exp [ i ( ω 2 t - β 2 z ) ] + c . c . } ,
P NL ( r , z , t ) = P 1 NL ( r , z , t ) + P 2 NL ( r , z , t ) ,
P 1 NL ( r , z , t ) = χ ( 3 ) ( A 1 2 + 2 A 2 2 ) A 1 exp [ i ( ω 1 t - β 1 z ) ] ,
P 2 NL ( r , z , t ) = χ ( 3 ) ( A 2 2 + 2 A 1 2 ) A 2 exp [ i ( ω 2 t - β 2 z ) ] ,
A 1 z + 1 v g 1 A 1 t + i β 1 ( 2 ) 2 A 1 t 2 = i ω 1 c n 2 ( A 1 2 + 2 A 2 2 ) A 1 ,
A 2 z + 1 v g 1 A 2 t + i β 2 ( 2 ) 2 A 2 t 2 = i ω 2 c n 2 ( A 2 2 + 2 A 1 2 ) A 2 ,
Δ ω 1 SPM + XPM ω 1 c n 2 ( E 1 2 + 2 E 2 2 ) z T 0 .
Δ ω 1 SPM + XPM Δ ω 1 SPM = ( 1 + 2 E 2 2 E 1 2 ) .
α 1 ( τ , z ) = - π ω 1 c n 2 E 2 2 L w × [ erf ( τ - τ d ) - erf ( τ - τ d + z L w ) ] ,
δ ω 1 ( τ , z ) = 2 ω 1 c n 2 E 2 2 L w T 0 × { exp [ - ( τ - τ d ) 2 ] - exp [ - ( τ - τ d + z L w ) 2 ] }
δ ω 1 ( τ , z ) = 2 ω 1 c n 2 E 2 2 L w T 0 × { exp [ - ( τ - τ d ) 2 ] - exp [ - ( τ - τ d + z L w ) 2 ] } .

Metrics