Abstract

The saturation properties of dye molecules that are rigidly held in a solid host are qualitatively different from those of molecules that are free to rotate. We have found that these unique saturation characteristics can be exploited to achieve nearly perfect vector phase conjugation for field strengths near the saturation intensity. We have studied these properties experimentally by using fluorescein-doped boric acid glass as the nonlinear-optical material.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, Appl. Opt. 8, 2282 (1969); Y. Silberberg, I. Bar-Joseph, Opt. Commun. 39, 265 (1981); I. Bar-Joseph, Y. Silberberg, Opt. Commun. 41, 455 (1982); M. A. Kramer, W. R. Tompkin, R. W. Boyd, J. Lumin. 31/32, 789 (1984); H. Fugiwara, K. Nakagawa, Opt. Commun. 55, 386 (1985); T. Todorov, L. Nikolova, N. Tomova, V. Dragostina, Opt. Quantum Electron. 13, 209 (1981); IEEE J. Quantum Electron. QE-22, 1262 (1986); W. R. Tompkin, R. W. Boyd, D. W. Hall, P. A. Tick, J. Opt. Soc. Am. B. 4, 1030 (1987).
    [CrossRef] [PubMed]
  2. M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
    [CrossRef] [PubMed]
  3. M. Montecchi, M. Settembre, M. Romagnoli, J. Opt. Soc. Am. B 5, 2357 (1988).
    [CrossRef]
  4. N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
    [CrossRef] [PubMed]
  5. V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
    [CrossRef]
  6. G. Grynberg, Opt. Commun. 48, 432 (1984); M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984); S. Saikan, M. Kiguchi, Opt. Lett. 7, 555 (1982).
    [CrossRef] [PubMed]
  7. M. S. Malcuit, D. G. Gauthier, R. W. Boyd, Opt. Lett. 13, 663 (1988).
    [CrossRef]
  8. L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
    [CrossRef]
  9. G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
    [CrossRef]
  10. M. Frakowiak, H. Waylerys, Acta Phys. Polon. 18, 93 (1959).
  11. T. Tomashek, Ann. Phys. 67, 622 (1922).
  12. D. W. Greggs, H. G. Drickamer, J. Chem. Phys. 35, 1780 (1960).
    [CrossRef]
  13. V. A. Pilipovitch, B. T. Sveshnikov, Opt. Spektrosk. 5, 290 (1958).

1988

1986

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

1984

G. Grynberg, Opt. Commun. 48, 432 (1984); M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984); S. Saikan, M. Kiguchi, Opt. Lett. 7, 555 (1982).
[CrossRef] [PubMed]

1983

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

1980

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

1978

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

1969

1960

D. W. Greggs, H. G. Drickamer, J. Chem. Phys. 35, 1780 (1960).
[CrossRef]

1959

M. Frakowiak, H. Waylerys, Acta Phys. Polon. 18, 93 (1959).

1958

V. A. Pilipovitch, B. T. Sveshnikov, Opt. Spektrosk. 5, 290 (1958).

1941

G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
[CrossRef]

1922

T. Tomashek, Ann. Phys. 67, 622 (1922).

Basov, N. G.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Blaschuk, V. N.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Boyd, R. W.

M. S. Malcuit, D. G. Gauthier, R. W. Boyd, Opt. Lett. 13, 663 (1988).
[CrossRef]

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Chase, L. L.

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

Claude, M. L.

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

Drickamer, H. G.

D. W. Greggs, H. G. Drickamer, J. Chem. Phys. 35, 1780 (1960).
[CrossRef]

Efimkov, V. F.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Frakowiak, M.

M. Frakowiak, H. Waylerys, Acta Phys. Polon. 18, 93 (1959).

Gauthier, D. G.

Greggs, D. W.

D. W. Greggs, H. G. Drickamer, J. Chem. Phys. 35, 1780 (1960).
[CrossRef]

Grynberg, G.

G. Grynberg, Opt. Commun. 48, 432 (1984); M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984); S. Saikan, M. Kiguchi, Opt. Lett. 7, 555 (1982).
[CrossRef] [PubMed]

Hulin, D.

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

Kotov, A. V.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Lewis, G. N.

G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
[CrossRef]

Lipkin, D.

G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
[CrossRef]

Magel, T. T.

G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
[CrossRef]

Malcuit, M. S.

Mamaev, A. V.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Mikhailov, S. I.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Montecchi, M.

Mysryrowicz, A.

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

Pilipetsky, N. F.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Pilipovitch, V. A.

V. A. Pilipovitch, B. T. Sveshnikov, Opt. Spektrosk. 5, 290 (1958).

Romagnoli, M.

Settembre, M.

Shankoff, T. A.

Shkurov, V. V.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Smirnov, M. G.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Sveshnikov, B. T.

V. A. Pilipovitch, B. T. Sveshnikov, Opt. Spektrosk. 5, 290 (1958).

Tomashek, T.

T. Tomashek, Ann. Phys. 67, 622 (1922).

Tompkin, W. R.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

Waylerys, H.

M. Frakowiak, H. Waylerys, Acta Phys. Polon. 18, 93 (1959).

Zel’dovich, B. Ya.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Zuberev, I. G.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Acta Phys. Polon.

M. Frakowiak, H. Waylerys, Acta Phys. Polon. 18, 93 (1959).

Ann. Phys.

T. Tomashek, Ann. Phys. 67, 622 (1922).

Appl. Opt.

J. Am. Chem. Soc.

G. N. Lewis, D. Lipkin, T. T. Magel, J. Am. Chem. Soc. 63, 3005 (1941).
[CrossRef]

J. Chem. Phys.

D. W. Greggs, H. G. Drickamer, J. Chem. Phys. 35, 1780 (1960).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

N. G. Basov, V. F. Efimkov, I. G. Zuberev, A. V. Kotov, S. I. Mikhailov, M. G. Smirnov, JETP Lett. 28, 197 (1978); I. McMichael, M. Khoshnevisan, P. Yeh, Opt. Lett. 11, 525 (1986); K. Kyuma, A. Yariv, S.-K. Kwong, Appl. Phys. Lett. 49, 617 (1986); I. McMichael, P. Yeh, P. Beckwith, Opt. Lett. 12, 507 (1987); I. McMichael, J. Opt. Soc. Am. B 5, 863 (1988).
[CrossRef] [PubMed]

Opt. Commun.

G. Grynberg, Opt. Commun. 48, 432 (1984); M. Ducloy, D. Bloch, Phys. Rev. A 30, 3107 (1984); S. Saikan, M. Kiguchi, Opt. Lett. 7, 555 (1982).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Spektrosk.

V. A. Pilipovitch, B. T. Sveshnikov, Opt. Spektrosk. 5, 290 (1958).

Phys. Rev. A

M. A. Kramer, W. R. Tompkin, R. W. Boyd, Phys. Rev. A 34, 2026 (1986).
[CrossRef] [PubMed]

L. L. Chase, M. L. Claude, D. Hulin, A. Mysryrowicz, Phys. Rev. A 28, 3969 (1983).
[CrossRef]

Sov. J. Quantum Electron.

V. N. Blaschuk, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkurov, Sov. J. Quantum Electron. 10, 356 (1980); G. Martin, L. L. Lam, R. W. Hellwarth, Opt. Lett. 5, 185 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level diagram showing the relevant optical interactions in fluorescein-doped boric acid glass. Following optical excitation from the singlet ground state S0 to the singlet excited state S1, population makes an intersystem crossing into the lowest-lying triplet state T1. Because of its long luminescent lifetime (~0.1 sec), the lowest-lying triplet state T1 acts as a trap level. At room temperature the principal relaxation route out of the triplet state is thermally activated delayed fluorescence, that is, a thermally excited transition from T1 to S1 followed by fluorescent decay back to the ground state.

Fig. 2
Fig. 2

Experimental setup used to study the polarization properties of DFWM. The quarter-wave plate (QWP) can be oriented at an arbitrary angle θ. For the experiments shown in Figs. 3 and 4, the fast axis of the quarter-wave plate is oriented at 45° to the input polarization direction so that the probe wave incident upon the nonlinear-optical medium is circularly polarized. If the DFWM process leads to perfect VPC, the effect of the quarter-wave plate will be removed in double pass, leading to a conjugate wave polarized in the initial polarization direction. Through the use of a polarizing beam splitter (PBS) and detectors, we measure the intensity Ig of the VPC (good) component and the intensity Ib of the orthogonal (bad) component.

Fig. 3
Fig. 3

Reflectivity associated with each polarization component plotted as a function of normalized pump intensity I/Isat. The solid curves in (a) were calculated by assuming a single saturation intensity, and the solid curves in (b) were calculated assuming a 40%-wide Gaussian distribution of saturation intensities. The circles represent experimental data and are plotted using the value Isat = 100 mW/cm2. Note that the reflectivity of the good component is greater than that of the bad component and becomes much greater than Rb for intensities near the saturation intensity.

Fig. 4
Fig. 4

Fidelity of the VPC process versus the normalized pump intensity. VPC fidelity is defined as the ratio Ig/(Ig + Ib), that is, as the ratio of the intensity of the proper polarization component to the total output intensity. The circles represent experimental data plotted using Isat = 100 mW/cm2, and the solid curve is calculated using the theory described in the text.

Fig. 5
Fig. 5

Intensity of each polarization component (in arbitrary units) plotted as a function of the state of polarization of the probe wave after it passes through the quarter-wave plate. (a) For low pump intensities (0.01Isat), severe degradation of the polarization properties of the phase-conjugation process is observed (Ig and Ib are comparable and show a strong dependence on θ). (b) For pump intensities near the saturation intensity (2Isat), the effects of the polarization distortion are largely removed (IbIg and Ig is independent of θ).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P = K E s 2 d Ω μ ^ ( μ ^ · E ) 1 + μ ^ · E 2 / E s 2 ,
P NL = - K E s 4 d Ω μ ^ ( μ ^ · E ) μ ^ · E 2 1 + μ ^ · E 2 / E s 2 .
P c = - K E s 4 d Ω μ ^ ( μ ^ · E 0 ) 2 ( μ ^ · E p * ) ( 1 + μ ^ · E 0 2 / E s 2 ) 2 .
P c = P g ^ g + P b ^ b ,
P g , b = - K E s 4 d Ω ( μ ^ · ^ g , b * ) ( μ ^ · E 0 ) 2 ( μ ^ · E p * ) ( 1 + μ ^ · E 0 2 / E s 2 ) 2 .
μ ^ = z ^ sin θ cos ϕ + y ^ sin θ sin ϕ + x ^ cos θ
P c = P x x ^ + P y y ^ ,
P x ( z ) = - π K A p x * e - i k z E s 2 { 2 α 2 [ 2 α 2 + 3 α 2 + 1 - 3 α tan - 1 ( α ) ] }
P y ( z ) = - π K A p y * e - i k z E s 2 { 1 α 2 [ 3 + α 2 α tan - 1 ( α ) - 3 ] } ,
P g , b ( z ) = P x ( z ) ( x ^ · ^ g , b * ) + P y ( z ) ( y ^ · ^ g , b * ) .
d C / d z = 2 π i k P c pm .
P c pm = ( 1 / λ ) 0 λ exp ( i k z ) P c ( z ) d z .
d C g d z = i κ g * A p * ,             d C b d z = i κ b * A p * ,
κ g * = 2 π k ( P g pm / A p * ) ,             κ b * = 2 π k ( P b pm / A p * ) .
C g ( 0 ) = - i κ g * l A p * ,             C b ( 0 ) = - i κ b * l A p * .

Metrics