Abstract

Second-harmonic generation and spectroscopic absorption measurements are used to study the nonlinear-optical thin-film properties of azo dye guest molecules oriented in a polymer host by corona-onset poling at elevated temperatures (COPET). Parallel-wire electrode and needle electrode configurations are studied. The orientational order of the nonlinear molecules, the internal electric field, and the stability of the second-harmonic properties are measured. The nonlinear properties stabilize after 10 days and remain relatively constant over a period of at least 8 months, and the films tolerate power densities of at least 60MW/cm2. Compared with other poling methods, COPET produces a more efficient long-range and long-term orientational order in the guest–host system studied, resulting in large, stable second-harmonic properties.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription