Abstract

Second-harmonic generation and spectroscopic absorption measurements are used to study the nonlinear-optical thin-film properties of azo dye guest molecules oriented in a polymer host by corona-onset poling at elevated temperatures (COPET). Parallel-wire electrode and needle electrode configurations are studied. The orientational order of the nonlinear molecules, the internal electric field, and the stability of the second-harmonic properties are measured. The nonlinear properties stabilize after 10 days and remain relatively constant over a period of at least 8 months, and the films tolerate power densities of at least 60MW/cm2. Compared with other poling methods, COPET produces a more efficient long-range and long-term orientational order in the guest–host system studied, resulting in large, stable second-harmonic properties.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
    [CrossRef]
  2. B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
    [CrossRef]
  3. K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
    [CrossRef]
  4. P. Pantelis, J. R. Hill, G. J. Davies, “Poled copoly(vinylidene fluoride-trifluoroethylene) as a host for guest nonlinear optical molecules,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 229.
    [CrossRef]
  5. G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
    [CrossRef]
  6. C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
    [CrossRef]
  7. A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.
  8. P. D. Southgate, “Room-temperature poling and morphology changes in pyroelectric polyvinylidene fluoride,” Appl. Phys. Lett. 28, 250–252 (1976).
    [CrossRef]
  9. S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
    [CrossRef]
  10. R. M. Shaffert, Electrophotography (Wiley, New York, 1975).
  11. G. M. Sessler, “Physical properties of electrets,” in Electrets, G. M. Sessler, ed. (Springer-Verlag, Berlin, 1987), p. 13.
  12. K. Yamaoka, E. Charney, “Electrical dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism,” J. Am. Chem. Soc. 94, 8963–8974 (1972).
    [CrossRef] [PubMed]
  13. C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
    [CrossRef]
  14. J. R. Platt, “Electrochromism, a possible change of color producible in dyes by an electric field,” J. Chem. Phys. 34, 862–863 (1961).
    [CrossRef]
  15. J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
    [CrossRef]
  16. E. E. Havinga, P. van Pelt, “Electrochromism of substituted polyalkenes in polymer matrices; influence of chain length on charge transfer,” Ber. Bunsenges. Phys. Chem. 83, 816–821 (1979).
    [CrossRef]
  17. I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).
  18. W. Liptay, J. Czekalla, “Die Bestimmung von absoluten Übergangsmomentrichtungen und vol Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus, I. Theorie,” Z. Naturforsch. A 15, 1072–1079 (1960).
  19. H. Labhardt, “Electrochromism,” Adv. Chem. Phys. 13, 179–204 (1967).
    [CrossRef]
  20. J. Griffiths, Colour and Constitution of Organic Molecules (Academic, New York, 1976).
  21. J. Zyss, D. S. Chemla, “Quadratic nonlinear optics and optimization of the second order nonlinear optical response of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 3.
  22. D. J. Williams, “Nonlinear optical properties of guest-host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 405.
    [CrossRef]
  23. K. D. Singer, M. Kuzyk, J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
    [CrossRef]
  24. J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).
  25. B. Dick, “Irreducible tensor analysis of sum and difference-frequency generation in partially oriented samples,” Chem. Phys. 96, 199–215 (1985).
    [CrossRef]
  26. P. Langevin, “Sur le biréfringences électrique et magnétique,” Radium 7, 250–260 (1910).
    [CrossRef]
  27. A. Peterlin, H. A. Stuart, “Über die Bestimmung der Gröse und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung,” Z. Phys. 112, 129–147 (1939).
    [CrossRef]
  28. Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
    [CrossRef]
  29. G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295–304 (1987).
    [CrossRef]
  30. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  31. J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).
  32. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [CrossRef]
  33. N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
    [CrossRef]
  34. S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, pp. 209–281.
  35. E. D. Palik, ed., Handbook of Optical Constants (Academic, Orlando, Fla., 1985).
  36. K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
    [CrossRef]
  37. H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
    [CrossRef]

1989 (1)

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

1988 (2)

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

1987 (5)

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295–304 (1987).
[CrossRef]

K. D. Singer, M. Kuzyk, J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).

1986 (1)

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

1985 (1)

B. Dick, “Irreducible tensor analysis of sum and difference-frequency generation in partially oriented samples,” Chem. Phys. 96, 199–215 (1985).
[CrossRef]

1982 (1)

G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

1979 (2)

S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
[CrossRef]

E. E. Havinga, P. van Pelt, “Electrochromism of substituted polyalkenes in polymer matrices; influence of chain length on charge transfer,” Ber. Bunsenges. Phys. Chem. 83, 816–821 (1979).
[CrossRef]

1976 (1)

P. D. Southgate, “Room-temperature poling and morphology changes in pyroelectric polyvinylidene fluoride,” Appl. Phys. Lett. 28, 250–252 (1976).
[CrossRef]

1972 (1)

K. Yamaoka, E. Charney, “Electrical dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism,” J. Am. Chem. Soc. 94, 8963–8974 (1972).
[CrossRef] [PubMed]

1971 (1)

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

1967 (1)

H. Labhardt, “Electrochromism,” Adv. Chem. Phys. 13, 179–204 (1967).
[CrossRef]

1966 (1)

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

1962 (2)

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

1961 (1)

J. R. Platt, “Electrochromism, a possible change of color producible in dyes by an electric field,” J. Chem. Phys. 34, 862–863 (1961).
[CrossRef]

1960 (1)

W. Liptay, J. Czekalla, “Die Bestimmung von absoluten Übergangsmomentrichtungen und vol Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus, I. Theorie,” Z. Naturforsch. A 15, 1072–1079 (1960).

1959 (1)

C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
[CrossRef]

1939 (1)

A. Peterlin, H. A. Stuart, “Über die Bestimmung der Gröse und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung,” Z. Phys. 112, 129–147 (1939).
[CrossRef]

1910 (1)

P. Langevin, “Sur le biréfringences électrique et magnétique,” Radium 7, 250–260 (1910).
[CrossRef]

Anderson, B. L.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

Barmji, S. S.

S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
[CrossRef]

Bloembergen, N.

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Blyumenfel’d, L. A.

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Boyd, G. T.

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295–304 (1987).
[CrossRef]

Charney, E.

K. Yamaoka, E. Charney, “Electrical dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism,” J. Am. Chem. Soc. 94, 8963–8974 (1972).
[CrossRef] [PubMed]

Chemla, D. S.

J. Zyss, D. S. Chemla, “Quadratic nonlinear optics and optimization of the second order nonlinear optical response of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 3.

Chernyakovskii, F. P.

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Czekalla, J.

W. Liptay, J. Czekalla, “Die Bestimmung von absoluten Übergangsmomentrichtungen und vol Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus, I. Theorie,” Z. Naturforsch. A 15, 1072–1079 (1960).

Davies, G. J.

P. Pantelis, J. R. Hill, G. J. Davies, “Poled copoly(vinylidene fluoride-trifluoroethylene) as a host for guest nonlinear optical molecules,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 229.
[CrossRef]

Dick, B.

B. Dick, “Irreducible tensor analysis of sum and difference-frequency generation in partially oriented samples,” Chem. Phys. 96, 199–215 (1985).
[CrossRef]

Dienes, A.

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

Dirk, C. W.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

Donath, W. E.

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

Feth, S. E.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Gordon, H. M.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

Green, G. D.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Gribanov, V. A.

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Griffiths, J.

J. Griffiths, Colour and Constitution of Organic Molecules (Academic, New York, 1976).

Hall, H. K.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Hall, R. C.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

Havinga, E. E.

E. E. Havinga, P. van Pelt, “Electrochromism of substituted polyalkenes in polymer matrices; influence of chain length on charge transfer,” Ber. Bunsenges. Phys. Chem. 83, 816–821 (1979).
[CrossRef]

Hayden, L. M.

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

Helles, W. R.

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

Higgins, B. G.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

Hill, J. R.

P. Pantelis, J. R. Hill, G. J. Davies, “Poled copoly(vinylidene fluoride-trifluoroethylene) as a host for guest nonlinear optical molecules,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 229.
[CrossRef]

Holland, W. R.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

Kanevskii, I. M.

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Kao, K. J.

S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
[CrossRef]

Katz, H. E.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

King, L. A.

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

Knoesen, A.

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

Kowel, S. T.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

Kumamoto, J.

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

Kurtz, S. K.

S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, pp. 209–281.

Kuzyk, M.

Kuzyk, M. G.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).

Labhardt, H.

H. Labhardt, “Electrochromism,” Adv. Chem. Phys. 13, 179–204 (1967).
[CrossRef]

Lalama, S. J.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Lam, J. Y. S.

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

Langevin, P.

P. Langevin, “Sur le biréfringences électrique et magnétique,” Radium 7, 250–260 (1910).
[CrossRef]

le Grange, J. D.

J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).

Lei, Du

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Lindsay, G. A.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

Liptay, W.

W. Liptay, J. Czekalla, “Die Bestimmung von absoluten Übergangsmomentrichtungen und vol Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus, I. Theorie,” Z. Naturforsch. A 15, 1072–1079 (1960).

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Meredith, G. R.

G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

Mortazavi, M. A.

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

Mulvaney, J. E.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Newnham, R. E.

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).

O’Konski, C. T.

C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
[CrossRef]

Orttung, W. H.

C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
[CrossRef]

Pantelis, P.

P. Pantelis, J. R. Hill, G. J. Davies, “Poled copoly(vinylidene fluoride-trifluoroethylene) as a host for guest nonlinear optical molecules,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 229.
[CrossRef]

Perlmann, M. M.

S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
[CrossRef]

Pershan, P. S.

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Peterlin, A.

A. Peterlin, H. A. Stuart, “Über die Bestimmung der Gröse und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung,” Z. Phys. 112, 129–147 (1939).
[CrossRef]

Platt, J. R.

J. R. Platt, “Electrochromism, a possible change of color producible in dyes by an electric field,” J. Chem. Phys. 34, 862–863 (1961).
[CrossRef]

Powers, J. C.

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

Runt, J.

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Ryazanova, A. V.

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Safari, A.

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Scozzafava, M.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Sessler, G. M.

G. M. Sessler, “Physical properties of electrets,” in Electrets, G. M. Sessler, ed. (Springer-Verlag, Berlin, 1987), p. 13.

Shaffert, R. M.

R. M. Shaffert, Electrophotography (Wiley, New York, 1975).

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Singer, K. D.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

K. D. Singer, M. Kuzyk, J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Sohn, J. E.

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

K. D. Singer, M. Kuzyk, J. E. Sohn, “Second-order nonlinear optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

Southgate, P. D.

P. D. Southgate, “Room-temperature poling and morphology changes in pyroelectric polyvinylidene fluoride,” Appl. Phys. Lett. 28, 250–252 (1976).
[CrossRef]

Stroeve, P.

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

Stuart, H. A.

A. Peterlin, H. A. Stuart, “Über die Bestimmung der Gröse und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung,” Z. Phys. 112, 129–147 (1939).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

van Duser, J. G.

G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

van Pelt, P.

E. E. Havinga, P. van Pelt, “Electrochromism of substituted polyalkenes in polymer matrices; influence of chain length on charge transfer,” Ber. Bunsenges. Phys. Chem. 83, 816–821 (1979).
[CrossRef]

Weinschenk, J. I.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Willand, C. S.

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

Williams, D. J.

G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

D. J. Williams, “Nonlinear optical properties of guest-host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 405.
[CrossRef]

Yamaoka, K.

K. Yamaoka, E. Charney, “Electrical dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism,” J. Am. Chem. Soc. 94, 8963–8974 (1972).
[CrossRef] [PubMed]

Yoshioka, K.

C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
[CrossRef]

Zyss, J.

J. Zyss, D. S. Chemla, “Quadratic nonlinear optics and optimization of the second order nonlinear optical response of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 3.

Adv. Chem. Phys. (1)

H. Labhardt, “Electrochromism,” Adv. Chem. Phys. 13, 179–204 (1967).
[CrossRef]

Appl. Phys. Lett. (3)

K. D. Singer, M. G. Kuzyk, W. R. Holland, J. E. Sohn, S. J. Lalama, “Electro-optic phase modulation and optical second harmonic generation in corona-poled polymer films,” Appl. Phys. Lett. 53, 1800–1802 (1988).
[CrossRef]

K. D. Singer, J. E. Sohn, S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).
[CrossRef]

P. D. Southgate, “Room-temperature poling and morphology changes in pyroelectric polyvinylidene fluoride,” Appl. Phys. Lett. 28, 250–252 (1976).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

E. E. Havinga, P. van Pelt, “Electrochromism of substituted polyalkenes in polymer matrices; influence of chain length on charge transfer,” Ber. Bunsenges. Phys. Chem. 83, 816–821 (1979).
[CrossRef]

Chem. Phys. (1)

B. Dick, “Irreducible tensor analysis of sum and difference-frequency generation in partially oriented samples,” Chem. Phys. 96, 199–215 (1985).
[CrossRef]

J. Am. Chem. Soc. (3)

H. E. Katz, K. D. Singer, J. E. Sohn, C. W. Dirk, L. A. King, H. M. Gordon, “Greatly enhanced second-order nonlinear optical susceptibilities in donor-acceptor organic molecules,” J. Am. Chem. Soc. 109, 6561–6563 (1987).
[CrossRef]

J. C. Powers, W. R. Helles, J. Kumamoto, W. E. Donath, “Stark effect of phenol blue (electrochromism),” J. Am. Chem. Soc. 86, 1004–1008 (1966).
[CrossRef]

K. Yamaoka, E. Charney, “Electrical dichroism studies of macromolecules in solutions. I. Theoretical considerations of electric dichroism and electrochromism,” J. Am. Chem. Soc. 94, 8963–8974 (1972).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. R. Platt, “Electrochromism, a possible change of color producible in dyes by an electric field,” J. Chem. Phys. 34, 862–863 (1961).
[CrossRef]

J. Electrostat. (1)

S. S. Barmji, K. J. Kao, M. M. Perlmann, “Polymer electrets corona charged at high temperature,” J. Electrostat. 6, 373–379 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

C. T. O’Konski, K. Yoshioka, W. H. Orttung, “Electrical properties of macromolecules IV. Determination of electric and optical parameters from saturation of electric birefringence in solutions,” J. Phys. Chem. 63, 1558–1565 (1959).
[CrossRef]

Macromolecules (2)

G. R. Meredith, J. G. van Duser, D. J. Williams, “Optical and nonlinear optical characterization of molecularly doped thermotropic liquid crystalline polymers,” Macromolecules 15, 1385–1389 (1982).
[CrossRef]

Du Lei, J. Runt, A. Safari, R. E. Newnham, “Dielectric properties of azo dye–poly(methyl methacrylate) mixtures,” Macromolecules 20, 1797–1801 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J. D. le Grange, M. G. Kuzyk, K. D. Singer, “Effects of order on nonlinear optical processes in organic molecular materials,” Mol. Cryst. Liq. Cryst. 150b, 567–605 (1987).

Phys. Rev. (1)

N. Bloembergen, P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962).
[CrossRef]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Radium (1)

P. Langevin, “Sur le biréfringences électrique et magnétique,” Radium 7, 250–260 (1910).
[CrossRef]

Russ. J. Phys. Chem. (1)

I. M. Kanevskii, V. A. Gribanov, F. P. Chernyakovskii, A. V. Ryazanova, L. A. Blyumenfel’d, “Effect of the electric field on the absorption spectra of molecular solutions. Linear and quadratic effects,” Russ. J. Phys. Chem. 45, 232–235 (1971).

Synth. Metals (1)

B. L. Anderson, R. C. Hall, B. G. Higgins, G. A. Lindsay, P. Stroeve, S. T. Kowel, “Quadratically enhanced second harmonic generation in polymer-dye Langmuir–Blodgett films: a new bilayer architecture,” Synth. Metals 28, D683–D688 (1989).
[CrossRef]

Thin Solid Films (2)

L. M. Hayden, B. L. Anderson, J. Y. S. Lam, B. G. Higgins, P. Stroeve, S. T. Kowel, “Second-harmonic generation in Langmuir-Blodgett films of hemicyanine-poly(octadecyl methacrylate) and hemicyanine-behenic acid,” Thin Solid Films 160, 379–388 (1988).
[CrossRef]

G. T. Boyd, “Optical second-harmonic generation as an orientational probe in poled polymers,” Thin Solid Films 152, 295–304 (1987).
[CrossRef]

Z. Naturforsch. A (1)

W. Liptay, J. Czekalla, “Die Bestimmung von absoluten Übergangsmomentrichtungen und vol Dipolmomenten angeregter Moleküle aus Messungen des elektrischen Dichroismus, I. Theorie,” Z. Naturforsch. A 15, 1072–1079 (1960).

Z. Phys. (1)

A. Peterlin, H. A. Stuart, “Über die Bestimmung der Gröse und Form, sowie der elektrischen, optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung,” Z. Phys. 112, 129–147 (1939).
[CrossRef]

Other (12)

J. Griffiths, Colour and Constitution of Organic Molecules (Academic, New York, 1976).

J. Zyss, D. S. Chemla, “Quadratic nonlinear optics and optimization of the second order nonlinear optical response of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 3.

D. J. Williams, “Nonlinear optical properties of guest-host polymer structures,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla, J. Zyss, eds. (Academic, Orlando, Fla., 1987), Vol. 1, p. 405.
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1957).

S. K. Kurtz, “Measurement of nonlinear optical susceptibilities,” in Quantum Electronics, H. Rabin, C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, pp. 209–281.

E. D. Palik, ed., Handbook of Optical Constants (Academic, Orlando, Fla., 1985).

C. S. Willand, S. E. Feth, M. Scozzafava, D. J. Williams, G. D. Green, J. I. Weinschenk, H. K. Hall, J. E. Mulvaney, “Electric-field poling of nonlinear optical polymers,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 107.
[CrossRef]

A. Knoesen, M. A. Mortazavi, S. T. Kowel, A. Dienes, B. G. Higgins, “Corona-onset poling of nonlinear molecularly doped films,” in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), p. 244.

P. Pantelis, J. R. Hill, G. J. Davies, “Poled copoly(vinylidene fluoride-trifluoroethylene) as a host for guest nonlinear optical molecules,” in Nonlinear Optical and Electroactive Polymers, P. N. Prasad, D. R. Ulrich, eds. (Plenum, New York, 1988), p. 229.
[CrossRef]

R. M. Shaffert, Electrophotography (Wiley, New York, 1975).

G. M. Sessler, “Physical properties of electrets,” in Electrets, G. M. Sessler, ed. (Springer-Verlag, Berlin, 1987), p. 13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Parallel-wire electrode poling configuration for COPET films. (b) Needle-electrode poling configuration for COPET films.

Fig. 2
Fig. 2

Absorption spectrum of a PMMA–DR1 film 1 month after poling.

Fig. 3
Fig. 3

Absorption spectrum of a PMMA–DR1 COPET film poled with a parallel-wire electrode as a function of time. No further measurable changes were observed after 10 days.

Fig. 4
Fig. 4

Second-harmonic intensity from a PMMA–DR1 film relative to a 20-μm-thick quartz plate. The thickness of the film is Ls = 1.19 μm.

Fig. 5
Fig. 5

Second-harmonic χeff/χq as a function of time for PMMA–DR1 films poled with a needle electrode. The first data point was taken 24 h after poling. The solid line was drawn as a visual aid.

Fig. 6
Fig. 6

Second-harmonic χeff/χq as a function of time for PMMA–DR1 films poled with a parallel-wire electrode. The first data point was taken immediately after poling. The solid line was drawn as a visual aid.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

V c = ( C 1 x + C 2 x 1 / 2 ) ln ( h / a ) ,
i c = ( V - V c ) V m μ C 3 / P ,
χ 33 ( 2 ) = N β 33 f 2 ω ( f ω ) 2 ( μ ^ · E ^ i ) 3 = N β 33 f 2 ω ( f ω ) 2 cos 3 θ ,
g ( θ ) = exp ( - Δ W / k T ) 0 π exp ( - Δ W / k T ) sin θ d θ ,
cos n θ = L n ( - Δ W / k T ) ,
Φ = ½ ( 3 cos 2 θ - 1 ) .
A A 0 = 3 cos 2 θ = 3 L 2 ( μ E i / k T )
A A 0 = 3 2 sin 2 θ = 3 2 [ 1 - L 2 ( μ E i / k T ) ] ,
Φ = 1 - A A 0 .
I s 2 ω I q 2 ω = π 2 χ eff 2 L s 2 exp ( - α s 2 ω L s ) sinhc [ ( α s 2 ω + i Δ β s ) L s / 2 ] 2 T s q ω q 2 ω 4 L q c 2 χ q 2 sin 2 ( π L q / 2 L qc ) T q s ω s 2 ω cos 2 θ s ,
χ eff = 2 χ 15 e x ω e z ω e x 2 ω + ( χ 31 e x ω e x ω + χ 33 e z ω e z ω ) e z 2 ω ,
χ eff χ q = 2 L qc T q 1 / 2 n s 3 / 2 cos θ s I s 2 ω / I q 2 ω π L s sinhc [ α 2 ω L s / 2 ] exp ( - α s 2 ω L s / 2 ) n q 3 / 2 .

Metrics