Abstract

We review the operation of, and materials requirements for, a variety of nonlinear-optics guided-wave devices.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Anderson and J. T. Boyd, Appl. Phys. Lett. 19, 266–268 (1971).
    [CrossRef]
  2. G. I. Stegeman and C. T. Seaton, Appl. Phys. Rev. (J. Appl. Phys.) 58, R57–R78 (1985).
    [CrossRef]
  3. G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
    [CrossRef]
  4. R. H. Stolen, Fiber Integr. Opt. 3, 21–51 (1980).
    [CrossRef]
  5. R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
    [CrossRef]
  6. G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
    [CrossRef]
  7. U. Osterberg and W. Margulis, Opt. Lett. 11, 516–18 (1986); Opt. Lett. 12, 57–59 (1987).
    [CrossRef] [PubMed]
  8. S. E. Miller and A. G. Chynoweth, eds., Optical Fiber Telecommunications (Academic, New York, 1979).
  9. An in-depth discussion of integrated optics can be found in D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974); there are numerous articles in T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975).
  10. S. C. Rashleigh and R. H. Stolen, Laser Focus 19(5), 155–161 (1983).
  11. H. Ito and H. Inaba, Opt. Lett. 2, 139–141 (1978).
    [CrossRef] [PubMed]
  12. W. Sohler and H. Suche, in Integrated Optics III, L. D. Hutcheson and D. G. Hall, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 163–171 (1983).
    [CrossRef]
  13. R. Regener and W. Sohler, J. Opt. Soc. Am. B 5, 267–277 (1988).
    [CrossRef]
  14. H. Hermann and W. Sohler, J. Opt. Soc. Am. B 5, 278–284 (1988).
    [CrossRef]
  15. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
    [CrossRef]
  16. I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
    [CrossRef]
  17. G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).
  18. K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), paper MB4, pp. 24–27; J. E. Sohn, K. D. Singer, M. G. Kuzyk, W. R. Holland, H. E. Katz, C. W. Dirk, M. L. Schilling, and R. B. Comizzoli, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).
  19. A. Buckley and J. B. Stamatoff, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).
  20. R. H. Stolen and H. W. K. Tom, Opt. Lett. 12, 585–587 (1987).
    [CrossRef] [PubMed]
  21. M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
    [CrossRef]
  22. M. Farries, Laser Focus 24(9), 12 (1988).
  23. Y. Aoki, IEEE J. Lightwave Technol. LT-6, 1225–1239 (1988).
    [CrossRef]
  24. M. E. Lines, J. Appl. Phys. 62, 4363–4370 (1987).
    [CrossRef]
  25. B. Nikolaus and D. Grischkowsky, Appl. Phys. Lett. 42, 1–2 (1983); Appl. Phys. Lett. 43, 228–230 (1983); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]
  26. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).
    [CrossRef]
  27. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
    [CrossRef]
  28. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289–291 (1983).
    [CrossRef] [PubMed]
  29. R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512–514 (1982).
    [CrossRef] [PubMed]
  30. J. M. Dziedic, R. H. Stolen, and A. Ashkin, Appl. Opt. 20, 1403–1406 (1981); N. J. Halas, D. Krokel, and D. Grischkowsky, Appl. Phys. Lett. 50, 886–888 (1987).
    [CrossRef]
  31. M. Cada, B. P. Keyworth, J. M. Glinski, A. J. Springthorpe, and P. Mandeville, J. Opt. Soc. Am. B 5, 462–465 (1988).
    [CrossRef]
  32. P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
    [CrossRef]
  33. S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
    [CrossRef]
  34. N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
    [CrossRef]
  35. E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).
  36. S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
    [CrossRef]

1988 (10)

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

R. Regener and W. Sohler, J. Opt. Soc. Am. B 5, 267–277 (1988).
[CrossRef]

H. Hermann and W. Sohler, J. Opt. Soc. Am. B 5, 278–284 (1988).
[CrossRef]

M. Farries, Laser Focus 24(9), 12 (1988).

Y. Aoki, IEEE J. Lightwave Technol. LT-6, 1225–1239 (1988).
[CrossRef]

M. Cada, B. P. Keyworth, J. M. Glinski, A. J. Springthorpe, and P. Mandeville, J. Opt. Soc. Am. B 5, 462–465 (1988).
[CrossRef]

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

1987 (5)

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

R. H. Stolen and H. W. K. Tom, Opt. Lett. 12, 585–587 (1987).
[CrossRef] [PubMed]

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

M. E. Lines, J. Appl. Phys. 62, 4363–4370 (1987).
[CrossRef]

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

1986 (2)

1985 (1)

G. I. Stegeman and C. T. Seaton, Appl. Phys. Rev. (J. Appl. Phys.) 58, R57–R78 (1985).
[CrossRef]

1983 (3)

S. C. Rashleigh and R. H. Stolen, Laser Focus 19(5), 155–161 (1983).

B. Nikolaus and D. Grischkowsky, Appl. Phys. Lett. 42, 1–2 (1983); Appl. Phys. Lett. 43, 228–230 (1983); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289–291 (1983).
[CrossRef] [PubMed]

1982 (2)

R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512–514 (1982).
[CrossRef] [PubMed]

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

1981 (1)

1980 (2)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

R. H. Stolen, Fiber Integr. Opt. 3, 21–51 (1980).
[CrossRef]

1978 (1)

1976 (1)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

1973 (1)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

1971 (1)

D. B. Anderson and J. T. Boyd, Appl. Phys. Lett. 19, 266–268 (1971).
[CrossRef]

Anderson, D. B.

D. B. Anderson and J. T. Boyd, Appl. Phys. Lett. 19, 266–268 (1971).
[CrossRef]

Andrejco, M. J.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Aoki, Y.

Y. Aoki, IEEE J. Lightwave Technol. LT-6, 1225–1239 (1988).
[CrossRef]

Ashkin, A.

Banyai, W. C.

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

Berger, P. R.

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

Bhattacharya, P.

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

Bierlein, J. D.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

Botineau, J.

Boyd, J. T.

D. B. Anderson and J. T. Boyd, Appl. Phys. Lett. 19, 266–268 (1971).
[CrossRef]

Buckley, A.

A. Buckley and J. B. Stamatoff, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Byer, R. L.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Cada, M.

Cardova-Plaza, A.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Carr, S. H.

G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Chen, Y.

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

Cullen, T. J.

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

Dziedic, J. M.

Ehrlich, J. E.

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

Farries, M.

M. Farries, Laser Focus 24(9), 12 (1988).

Farries, M. C.

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Fejer, M. M.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Fermann, M. E.

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Finlayson, N.

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

Friberg, S. R.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Gier, T. E.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Glinski, J. M.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289–291 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Grischkowsky, D.

B. Nikolaus and D. Grischkowsky, Appl. Phys. Lett. 42, 1–2 (1983); Appl. Phys. Lett. 43, 228–230 (1983); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Hasegawa, A.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Hermann, H.

Inaba, H.

Ironside, C. N.

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

Ito, H.

Josse, D.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Keyworth, B. P.

Koch, S. W.

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

Ledoux, I.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Lines, M. E.

M. E. Lines, J. Appl. Phys. 62, 4363–4370 (1987).
[CrossRef]

Magel, G. A.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Mandeville, P.

Marcuse, D.

An in-depth discussion of integrated optics can be found in D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974); there are numerous articles in T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975).

Margulis, W.

Marks, T. J.

G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289–291 (1983).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Nikolaus, B.

B. Nikolaus and D. Grischkowsky, Appl. Phys. Lett. 42, 1–2 (1983); Appl. Phys. Lett. 43, 228–230 (1983); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Oliver, M. K.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Osterberg, U.

Pamulapati, J.

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

Payne, D. N.

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh and R. H. Stolen, Laser Focus 19(5), 155–161 (1983).

Ratner, M. N.

G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Regener, R.

Russell, J.

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Saifi, M. A.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Seaton, C. T.

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

G. I. Stegeman and C. T. Seaton, Appl. Phys. Rev. (J. Appl. Phys.) 58, R57–R78 (1985).
[CrossRef]

Shaw, H. J.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Silberberg, Y.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Singer, K. D.

K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), paper MB4, pp. 24–27; J. E. Sohn, K. D. Singer, M. G. Kuzyk, W. R. Holland, H. E. Katz, C. W. Dirk, M. L. Schilling, and R. B. Comizzoli, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Smith, P. W.

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, J. Opt. Soc. Am. B 5, 267–277 (1988).
[CrossRef]

H. Hermann and W. Sohler, J. Opt. Soc. Am. B 5, 278–284 (1988).
[CrossRef]

W. Sohler and H. Suche, in Integrated Optics III, L. D. Hutcheson and D. G. Hall, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 163–171 (1983).
[CrossRef]

Springthorpe, A. J.

St, P.

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Stamatoff, J. B.

A. Buckley and J. B. Stamatoff, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Stegeman, G. I.

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

G. I. Stegeman and C. T. Seaton, Appl. Phys. Rev. (J. Appl. Phys.) 58, R57–R78 (1985).
[CrossRef]

Stolen, R. H.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

R. H. Stolen and H. W. K. Tom, Opt. Lett. 12, 585–587 (1987).
[CrossRef] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Opt. Lett. 8, 289–291 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh and R. H. Stolen, Laser Focus 19(5), 155–161 (1983).

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

R. H. Stolen, J. Botineau, and A. Ashkin, Opt. Lett. 7, 512–514 (1982).
[CrossRef] [PubMed]

J. M. Dziedic, R. H. Stolen, and A. Ashkin, Appl. Opt. 20, 1403–1406 (1981); N. J. Halas, D. Krokel, and D. Grischkowsky, Appl. Phys. Lett. 50, 886–888 (1987).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

R. H. Stolen, Fiber Integr. Opt. 3, 21–51 (1980).
[CrossRef]

Suche, H.

W. Sohler and H. Suche, in Integrated Optics III, L. D. Hutcheson and D. G. Hall, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 163–171 (1983).
[CrossRef]

Sudo, S.

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

Tappert, F.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

Tom, H. W. K.

Tomlinson, W. J.

Trillo, S.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

Vezzoli, G. C.

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

Vidakovic, P.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Wabnitz, S.

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

Wong, G. K.

G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Wright, E. M.

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

Zanoni, R.

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Zumsteg, F. C.

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

Zyss, J.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. (1)

E. M. Wright, S. W. Koch, J. E. Ehrlich, C. T. Seaton, and G. I. Stegeman, Appl. Phys. 52, 2127–2129 (1988).

Appl. Phys. Lett. (7)

S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, Appl. Phys. Lett. 53, 837–839 (1988).
[CrossRef]

P. R. Berger, Y. Chen, P. Bhattacharya, J. Pamulapati, and G. C. Vezzoli, Appl. Phys. Lett. 52, 1125–1127 (1988).
[CrossRef]

S. R. Friberg, Y. Silberberg, M. K. Oliver, M. J. Andrejco, M. A. Saifi, and P. W. Smith, Appl. Phys. Lett. 51, 1135–1137 (1987).
[CrossRef]

N. Finlayson, W. C. Banyai, E. M. Wright, C. T. Seaton, G. I. Stegeman, T. J. Cullen, and C. N. Ironside, Appl. Phys. Lett. 53, 1144–1146 (1988).
[CrossRef]

B. Nikolaus and D. Grischkowsky, Appl. Phys. Lett. 42, 1–2 (1983); Appl. Phys. Lett. 43, 228–230 (1983); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142–144 (1973).
[CrossRef]

D. B. Anderson and J. T. Boyd, Appl. Phys. Lett. 19, 266–268 (1971).
[CrossRef]

Appl. Phys. Rev. (J. Appl. Phys.) (1)

G. I. Stegeman and C. T. Seaton, Appl. Phys. Rev. (J. Appl. Phys.) 58, R57–R78 (1985).
[CrossRef]

Electron. Lett. (1)

M. C. Farries, P. St, J. Russell, M. E. Fermann, and D. N. Payne, Electron. Lett. 23, 322–324 (1987).
[CrossRef]

Fiber Integr. Opt. (1)

R. H. Stolen, Fiber Integr. Opt. 3, 21–51 (1980).
[CrossRef]

IEEE J. Lightwave Technol. (2)

G. I. Stegeman, R. Zanoni, N. Finlayson, E. M. Wright, and C. T. Seaton, IEEE J. Lightwave Technol. 6, 953–970 (1988).
[CrossRef]

Y. Aoki, IEEE J. Lightwave Technol. LT-6, 1225–1239 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, IEEE J. Quantum Electron. QE-18, 1062–1072 (1982).
[CrossRef]

J. Appl. Phys. (2)

F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, J. Appl. Phys. 47, 4980–4985 (1976).
[CrossRef]

M. E. Lines, J. Appl. Phys. 62, 4363–4370 (1987).
[CrossRef]

J. Opt. Soc. Am. (1)

G. A. Magel, S. Sudo, A. Cardova-Plaza, M. M. Fejer, H. J. Shaw, and R. L. Byer, J. Opt. Soc. Am. 4(13), P77 (1987); R. S. Feigelson, Mater. Res. Bull. 13, 47–55 (1988).
[CrossRef]

J. Opt. Soc. Am. B (3)

Laser Focus (2)

M. Farries, Laser Focus 24(9), 12 (1988).

S. C. Rashleigh and R. H. Stolen, Laser Focus 19(5), 155–161 (1983).

Opt. Eng. (1)

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095–1098 (1980).
[CrossRef]

Other (6)

S. E. Miller and A. G. Chynoweth, eds., Optical Fiber Telecommunications (Academic, New York, 1979).

An in-depth discussion of integrated optics can be found in D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974); there are numerous articles in T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1975).

W. Sohler and H. Suche, in Integrated Optics III, L. D. Hutcheson and D. G. Hall, eds., Proc. Soc. Photo-Opt. Instrum. Eng.408, 163–171 (1983).
[CrossRef]

G. K. Wong, T. J. Marks, S. H. Carr, and M. N. Ratner, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

K. D. Singer, in Digest of Topical Meeting on Nonlinear Optical Properties of Materials (Optical Society of America, Washington, D.C., 1988), paper MB4, pp. 24–27; J. E. Sohn, K. D. Singer, M. G. Kuzyk, W. R. Holland, H. E. Katz, C. W. Dirk, M. L. Schilling, and R. B. Comizzoli, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

A. Buckley and J. B. Stamatoff, in Proceedings of NATO Advanced Research Workshop on Nonlinear Optical Effects in Organic Polymers (NATO, Brussels, to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Examples of guided wave geometries: (a) fiber waveguide, (b) planar or slab waveguide, (c) channel waveguide.

Fig. 2
Fig. 2

Typical electric-field distributions for (a) TEm and (b) TMm modes.

Fig. 3
Fig. 3

Allowed values for the effective index for the lowest-order TE and TM guided modes versus normalized film thickness (k0h).

Fig. 4
Fig. 4

Techniques for coupling an external radiation field into optical waveguides: (a) prism coupling, (b) grating coupling, (c) end-fire coupling.

Fig. 5
Fig. 5

Guided-mode dispersion curves used to determine phase-matching possibilities (intersection of the fundamental and harmonic dispersion curves).

Fig. 6
Fig. 6

Guided-wave field overlap for a two-film waveguide for harmonic generation for TE0 + TE0 → TM1. Note that there are no interference effects in the SHG signal since only half of the effective guiding layer is nonlinear.

Fig. 7
Fig. 7

Nonlinear fiber Raman phenomena: (a) stimulated Ra-man scattering, (b) Raman amplification, (c) Raman lasers.

Fig. 8
Fig. 8

Raman gain in three different glasses.

Fig. 9
Fig. 9

Four-photon phase matching in fibers: (a) phase matching by different waveguide modes, (b) phase matching by different polarizations. P1 and P2 refer to pump photons, and A and S are the higher- and lower-frequency generated photons commonly called anti-Stokes and Stokes photons, respectively.

Fig. 10
Fig. 10

Fiber pulse compression. The pulse is chirped in the fiber by the intensity-dependent index and compressed by the dispersive delay of the external grating pair.

Fig. 11
Fig. 11

Soliton pulse compression. The uncompressed wings are removed by taking advantage of an intensity-dependent state of polarization at the fiber output.

Fig. 12
Fig. 12

Fiber Kerr modulator. A strong optical pulse at ω1 changes the polarization state of a signal at ω2 by the intensity-dependent nonlinear index.

Fig. 13
Fig. 13

Standard integrated-optics devices and their response to optical power with and without nonlinearities: (a) 1/2-beat-length directional coupler, (b) 1-beat-length directional coupler, (c) distributed-feedback grating, (d) Mach–Zehnder interferometer, (e) mode sorter, (f) prism coupler.

Fig. 14
Fig. 14

(a) Light distributions at the output ports of a nonlinear directional coupler made in semiconductor-doped glass. Note the power-dependent changes in the outputs of the two channels. (b) Variation in the fraction of the incident power switched to the cross channel in a nonlinear directional coupler versus the saturation parameter w for various detunings of a two-level saturable-absorber model.

Fig. 15
Fig. 15

Figure of merit W as a function of the normalized detuning Δ for a variety of semiconductors. The inset shows the coupling length lc, for a nonlinear directional coupler that is equal to the inverse linear absorption coefficient.

Fig. 16
Fig. 16

Three fiber-switching geometries: (a) switching of circular polarization in a weakly birefringent fiber, (b) switching between guiding cores of a twin-core fiber, (c) switching of linear polarization in a rocking-filter fiber. The outputs of all three geometries represent powers well below and above the critical power for a 1/2-beat-length coupler as illustrated in Fig. 13(a).

Tables (3)

Tables Icon

Table 1 SHG Figures of Merit Relative to LiNbO3 for Materials with Potential for Waveguide Applications

Tables Icon

Table 2 Minimum Nonlinear Phase Shift, ΔϕNL, and Minimum Dimensionless Material Parameter W (>80% Transmission) Required for Various Nonlinear Guided-Wave Devices

Tables Icon

Table 3 Figures of Merit, Δnsat/αλ, of Different Nonlinear Materials for Application of Third-Order Nonlinearities to Guided-Wave Devices

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( 2 ω , L ) = ( k 0 L ) 2 d eff 2 n eff 3 sin 2 ϕ ϕ 2 K 2 P 2 ( ω , L ) .
E ( r , t ) = ½ e ^ E i ( ω i , β i ) f i ( x , y ) exp [ j ( ω i t - β i z ) ] + c . c . ,
K = - d x - d y d i j k d eff e i ( 2 ω ) e j ( ω ) e k ( ω ) f i ( x , y ) f j ( x , y ) f k ( x , y ) .
Δ β = χ eff ( 3 ) P / A eff ,
A eff - 1 = 0 2 π 0 r d r d θ f i ( r , θ ) f j ( r , θ ) f k ( r , θ ) f l ( r , θ ) ( D i D j D k D l ) 1 / 2 , D i = 0 2 π 0 r d r d θ f i 2 ( r , θ ) .
β = β 0 + Δ β 0 P g w
Δ β 0 = k 0 - d x - d y n 0 2 ( x , y ) n 2 ( x , y ) f ( x , y ) 4 .
W = Δ n sat L λ × 1 L α = Δ n sat λ α ,
n 2 = d n d T α τ t ρ C p ,
n 2 eff n 2 Δ t τ t ,

Metrics