Abstract

Photorefractive gratings are written, read out, and erased with single 30-psec pulses at fluences of 1–15 mJ/cm2 and a wavelength of 0.532 μm in a BaTiO3 crystal. The gratings consist of one component that is fully formed 50 psec after the peak in the writing beams and a second component that grows for approximately 30 sec until it starts to decay by dark erasure. The photorefractive index change per absorbed photon for picosecond pulses is approximately the same as that obtained when a cw beam at 0.515 μm is used with the same crystal. The index change is approximately a factor of 30 smaller than that observed at the same fluence in GaAs at 1.06 μm when the same picosecond laser system is used.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
    [CrossRef]
  2. A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, Opt. Lett. 12, 501 (1987).
    [CrossRef] [PubMed]
  3. D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
    [CrossRef]
  4. G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, and T. F. Boggess, Opt. Lett. 11, 647 (1986).
    [CrossRef] [PubMed]
  5. V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].
  6. A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
    [CrossRef]
  7. G. C. Valley and A. L. Smirl, IEEE J. Quantum Electron. QE-24, 304 (1988).
    [CrossRef]
  8. J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, Opt. Lett. 13, 224 (1988).
    [CrossRef] [PubMed]
  9. G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.
  10. M. B. Klein, in Photorefractive Materials and Applications, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 7, Table 7–2.
  11. L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, Opt. Lett. 6, 475 (1981).
    [CrossRef] [PubMed]
  12. T. Y. Chang, “Nonlinear optical studies of photorefractive barium titanate: parameter measurement and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).
  13. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
    [CrossRef]
  14. F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
    [CrossRef]
  15. D. von der Linde and A. M. Glass, Appl. Phys. 8, (1975).
  16. M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985).
    [CrossRef]
  17. S. Ducharme and J. Feinberg, J. Appl. Phys. 56, 839 (1984).
    [CrossRef]
  18. D. Mahgerefteh and J. Feinberg, Opt. Lett. 13, 1111 (1988).
    [CrossRef] [PubMed]

1988 (4)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
[CrossRef]

G. C. Valley and A. L. Smirl, IEEE J. Quantum Electron. QE-24, 304 (1988).
[CrossRef]

J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, Opt. Lett. 13, 224 (1988).
[CrossRef] [PubMed]

D. Mahgerefteh and J. Feinberg, Opt. Lett. 13, 1111 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (1)

1985 (1)

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

1984 (1)

S. Ducharme and J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

1983 (1)

F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

1981 (1)

1980 (2)

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

1978 (1)

D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
[CrossRef]

1975 (1)

D. von der Linde and A. M. Glass, Appl. Phys. 8, (1975).

Albers, J.

F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Boggess, T. F.

Bohnert, K.

Bohnert, K. M.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
[CrossRef]

Chang, T. Y.

L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, Opt. Lett. 6, 475 (1981).
[CrossRef] [PubMed]

T. Y. Chang, “Nonlinear optical studies of photorefractive barium titanate: parameter measurement and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

Dubard, J.

G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.

Ducharme, S.

S. Ducharme and J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

Feinberg, J.

D. Mahgerefteh and J. Feinberg, Opt. Lett. 13, 1111 (1988).
[CrossRef] [PubMed]

S. Ducharme and J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, Opt. Lett. 6, 475 (1981).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

Glass, A. L.

G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.

Glass, A. M.

D. von der Linde and A. M. Glass, Appl. Phys. 8, (1975).

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

Hellwarth, R. W.

L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, Opt. Lett. 6, 475 (1981).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

Jonathan, J. M. C.

Klein, M. B.

G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, and T. F. Boggess, Opt. Lett. 11, 647 (1986).
[CrossRef] [PubMed]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

M. B. Klein, in Photorefractive Materials and Applications, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 7, Table 7–2.

Kukhtarev, N. V.

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Kurz, H.

D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
[CrossRef]

Laeri, F.

F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Lam, L. K.

Mahgerefteh, D.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Mire, C. D.

Mullen, R. A.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Roosen, G.

Roussignol, Ph.

Sal’kova, E. N.

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

Schirmer, O. F.

D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
[CrossRef]

Smirl, A. L.

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
[CrossRef]

G. C. Valley and A. L. Smirl, IEEE J. Quantum Electron. QE-24, 304 (1988).
[CrossRef]

A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, Opt. Lett. 12, 501 (1987).
[CrossRef] [PubMed]

G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, and T. F. Boggess, Opt. Lett. 11, 647 (1986).
[CrossRef] [PubMed]

G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

Sukhoverkhova, L. G.

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

Tschudi, T.

F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Valley, G. C.

G. C. Valley and A. L. Smirl, IEEE J. Quantum Electron. QE-24, 304 (1988).
[CrossRef]

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
[CrossRef]

A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, Opt. Lett. 12, 501 (1987).
[CrossRef] [PubMed]

G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, and T. F. Boggess, Opt. Lett. 11, 647 (1986).
[CrossRef] [PubMed]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.

Vinetskii, V. L.

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

von der Linde, D.

D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
[CrossRef]

D. von der Linde and A. M. Glass, Appl. Phys. 8, (1975).

Appl. Phys. (2)

D. von der Linde, O. F. Schirmer, and H. Kurz, Appl. Phys. 15, 167 (1978).
[CrossRef]

D. von der Linde and A. M. Glass, Appl. Phys. 8, (1975).

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, Ferroelectrics 22, 949 (1979).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. L. Smirl, G. C. Valley, K. M. Bohnert, and T. F. Boggess, IEEE J. Quantum Electron. QE-24, 289 (1988).
[CrossRef]

G. C. Valley and A. L. Smirl, IEEE J. Quantum Electron. QE-24, 304 (1988).
[CrossRef]

J. Appl. Phys. (3)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, J. Appl. Phys. 52, 1297 (1980).
[CrossRef]

M. B. Klein and G. C. Valley, J. Appl. Phys. 57, 4901 (1985).
[CrossRef]

S. Ducharme and J. Feinberg, J. Appl. Phys. 56, 839 (1984).
[CrossRef]

Kvantovaya Electron. (1)

V. L. Vinetskii, N. V. Kukhtarev, E. N. Sal’kova, and L. G. Sukhoverkhova, Kvantovaya Electron. 7, 1191 (1980) [Sov. J. Quantum Electron. 10, 684 (1980)].

Opt. Commun. (1)

F. Laeri, T. Tschudi, and J. Albers, Opt. Commun. 47, 387 (1983).
[CrossRef]

Opt. Lett. (5)

Other (3)

G. C. Valley, J. Dubard, A. L. Smirl, and A. L. Glass, “Picosecond photorefractive response of GaAs:EL2, InP:FE, and CdTe:V,” submitted to Opt. Lett.

M. B. Klein, in Photorefractive Materials and Applications, P. Gunter and J. P. Huignard, eds. (Springer-Verlag, Heidelberg, 1987), Chap. 7, Table 7–2.

T. Y. Chang, “Nonlinear optical studies of photorefractive barium titanate: parameter measurement and phase conjugation,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental geometry for writing and reading transient photorefractive gratings in BaTiO3 with picosecond pulses. The two writing pulses are p polarized, and the probe is s polarized.

Fig. 2
Fig. 2

Picosecond evolution of the diffraction efficiency from a 0.48-μm-period laser-induced grating written by two p-polarized 30-psec pulses, each having a fluence of 6 mJ/cm−2, as measured by a weak s-polarized probe.

Fig. 3
Fig. 3

Schematic of geometry for measuring the slow formation, dark decay, and multiple-pulse erasure of photorefractive gratings written in BaTiO3 by 30-psec, p-polarized pulses. The time delay τ between successive pulses in the p-polarized probe train was varied from 1 to 60 sec.

Fig. 4
Fig. 4

Slow increase in the diffraction efficiency of a 0.48-μm-period grating written by two p-polarized, 6.85-mJ/cm2 picosecond pulses as measured by a train of p-polarized 4.5-μJ/cm2 probe pulses at a 1-Hz repetition rate.

Fig. 5
Fig. 5

Measurement of the dark decay of a 0.48-μm grating written by two p-polarized, 6.99-mJ/cm2 pulses. The diffraction efficiency was probed by a p-polarized train of 4.5-μJ/cm2 pulses at 0.28 Hz. The dashed line is a least-squares fit to an exponential corresponding to a grating dark decay time of 570 sec.

Fig. 6
Fig. 6

Measurement of the multiple-pulse erasure of a 0.48-μm-period photorefractive grating (written by two p-polarized, 6.98-mJ/cm2 pulses) by a train of p-polarized, 1.93-mJ/cm2 erasure pulses at 1 Hz. Note the upper abscissa scale records the time following the written process, and the lower scale records the accumulated erasure fluence. The dashed line is a least-squares fit to an exponential corresponding to a grating dark decay time of 600 sec and an erasure fluence of 111 mJ/cm2.

Fig. 7
Fig. 7

Measurement of the diffraction efficiency of a 0.48-μm-period grating during the recording process as a function of the total fluence in the two p-polarized writing pulses. The s-polarized probe pulse was counterpropagating to, and coincident with, one of the writing pulses. The dashed line is a fit to the data, yielding a slope of 2.

Fig. 8
Fig. 8

Schematic of the arrangement for investigating the efficiencies of fully formed photorefractive gratings written by two p-polarized pump pulses. The time delay τ of the p-polarized probe was varied from 1 to 60 sec.

Fig. 9
Fig. 9

Diffraction efficiency of a fully formed, 0.48-μm grating as a function of the total fluence in the two p-polarized writing pulses, as measured 30 sec after the recording process by a p-polarized probe. The dashed line is a fit to the data that yields a slope of 1.9.

Fig. 10
Fig. 10

Diffraction efficiency of a partially formed, 0.48-μm grating as a function of the total fluence in the two p-polarized writing pulses, as measured 500 psec after the recording process by an s-polarized, counterpropagating probe. The dashed line is a fit to the data that yields a slope of 2.9.

Fig. 11
Fig. 11

Comparison between the photorefractive index changes induced in BaTiO3 and GaAs by picosecond pulses. The circles (triangles) represent the photorefractive index changes written in of total writing fluence at 0.532 μm BaTiO3 (GaAs) as a function (1.06 μm), as determined from transient-grating (two-beam-coupling) measurements. The dashed and solid lines have a slope of 1.

Fig. 12
Fig. 12

Schematic of the geometry for measuring the two-beam-coupling gain, erasure fluence, and dark decay time of BaTiO3 with s-polarized cw beams: A, B, C, D, shutters; IF, interference filter; PMT, photomultiplier.

Fig. 13
Fig. 13

The dark decay of photorefractive gratings written in BaTiO3 by s-polarized cw beams. The line represents an exponential with a decay constant for the diffraction efficiency of 274 sec.

Tables (5)

Tables Icon

Table 1 Dark Grating Decaya

Tables Icon

Table 2 Multiple-Pulse Erasurea

Tables Icon

Table 3 Comparison of BaTiO3 and GaAs

Tables Icon

Table 4 Comparison of cw and Pulsed Experimental Conditions

Tables Icon

Table 5 Comparison between Pulsed and cw Operation of BaTiO3

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η exp [ - 2 ( t / τ g + F a / F e ) ] = exp { - 2 [ t / τ g + F p R ( t - t 0 ) / F e ] } ,
Δ T / T = [ T ( with pump ) - T ( without pump ) ] / T ( without pump ) .
Δ T / T Γ l + Δ α l ,
[ Δ T / T 0 - Δ T / T π ] / 2 = Γ l .
I ± 1 ( r , z , t ) = I ± 1 ( 0 , z , 0 ) exp ( - t 2 / τ 2 ) exp ( - r 2 / r 0 2 )
E sc ( r , z , t ) [ 2 ( m 0 ) 1 / 2 / ( m 0 + 1 ) ] - t d t I + 1 ( r , z , t ) - t d t [ I + 1 ( r , z , t ) I - 1 ( r , z , t ) ] 1 / 2 ,
[ Δ T / T 0 - Δ T / T π ] / 2 ( 1 / 2 ) ( 1 / 2 ) Γ ( 0 , ) l ( 1 / 2 ) ( 1 / 2 ) 2 π Δ n ( 0 , ) l / × [ ( m 0 ) 1 / 2 λ cos θ ] ,
Δ n ( m 0 ) Δ n ( m 0 ) = ( m 0 ) 1 / 2 / ( 1 + m 0 ) ( m 0 ) 1 / 2 / ( 1 + m 0 ) ,
η ( T 0 / 3 ) [ π Δ n ( 0 , ) l / ( λ cos θ ) ] 2 ,
Γ = ( 2 π / λ ) n 3 r E D / ( 1 + E D / E q ) ,

Metrics