Abstract

Phase-matched electric-field-induced second-harmonic generation is demonstrated in single-mode germania-doped silica fibers. A periodic second-order nonlinearity is induced by a simple interdigitated electrode structure, which can be rotated to permit phase matching between all propagating modes. The most efficient mode interaction between HE11ω and HE112ω is achieved at 1.064 μm by using a Q-switched Nd+3:YAG laser. In principle, phase matching at any propagating wavelength is possible. This technique could be applied to planar as well as cylindrical waveguides and can be used with many non-χ(2) materials. The asymmetry in the applied electric field enhances the optical-field overlaps between modes of dissimilar orders, and this is also demonstrated. A conversion efficiency of 4.0 × 10−4% has been obtained in unoptimized devices. Device optimization is also discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription