Abstract

A stable train of compressed Stokes pulses (to ~10 nsec) is obtained in a stimulated Brillouin fiber ring laser (of length L = 83 m) by periodically interrupting the argon-ion cw pump beam with an intraring cavity acousto-optic modulator. Interruption of the pump action, at each round-trip time trLn/c, permits damping of the excited sound waves that accumulate at the entry of the fiber owing to the inertial response of the material, well described by the coherent three-wave stimulated Brillouin scattering model (C3W-SBS equations). Amplification and compression of the backscattered Stokes pulse are limited by nonlinear optical Kerr effect, which is incorporated into the C3W-SBS equations.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539 (1972).
    [Crossref]
  2. D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10 (1983).
  3. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
    [Crossref]
  4. D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
    [Crossref]
  5. B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
    [Crossref]
  6. D. R. Ponikvar and S. Ezekiel, “Stabilized single-frequency stimulated Brillouin fiber ring laser,” Opt. Lett. 6, 398 (1981).
    [Crossref] [PubMed]
  7. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7, 509 (1982).
    [Crossref] [PubMed]
  8. A. Ya. Karasik and A. V. Luchnikov, “Generation of nanosecond radiation pulses as a result of stimulated Brillouin scattering in single-mode fiberglass waveguide,” Sov. J. Quantum Electron. 15, 877 (1985).
    [Crossref]
  9. I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
    [Crossref]
  10. V. N. Lugovoy and V. N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam–Brillouin radiation in a laser resonator,” Opt. Acta 20, 165 (1973).
    [Crossref]
  11. R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175 (1971).
    [Crossref]
  12. I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606 (1985).
    [Crossref]
  13. C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945 (1966).
    [Crossref]
  14. W. Kaiser and M. Maier, “Stimulated Mandelstam–Brillouin process,” in Laser Handbook 2, T. F. Arecchi and F. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1077.
  15. I. L. Fabelinskii, “Stimulated molecular scattering of light,” in Molecular Scattering of Light, I. L. Fabelinskii, ed. (Plenum, New York, 1968), pp. 483–532; “Stimulated Mandelstam–Brillouin process,” in Nonlinear Optics, Vol. I of Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 363–418.
    [Crossref]
  16. J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering: Implications for optical fibers,” Phys. Rev. A 34, 3940 (1986).
    [Crossref] [PubMed]
  17. C. Montes and R. Pellat, “Inertial response to nonstationary stimulated Brillouin backscattering: damage of optical and plasma fibers,” Phys. Rev. A 36, 2976 (1987).
    [Crossref] [PubMed]
  18. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
    [Crossref]
  19. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516 (1980).
    [Crossref] [PubMed]
  20. F. Chu and C. Karney, “Solution of the three-wave resonant equations with one wave heavily damped,” Phys. Fluids 20, 1728 (1977).
    [Crossref]
  21. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).
    [Crossref]
  22. G. Lamb, in Elements of Soliton Theory, G. Lamb, ed. (Wiley, New York, 1980), p. 153.
  23. J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz,” Solid State Commun. 16, 279 (1975).
    [Crossref]
  24. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
    [Crossref]
  25. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
    [Crossref] [PubMed]
  26. M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A 36, 3862 (1987).
    [Crossref] [PubMed]
  27. Y. S. Silberberg and I. Bar-Joseph, “Optical instabilities in a nonlinear Kerr medium,” J. Opt. Soc. Am. B 1, 662 (1984).
    [Crossref]
  28. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
    [Crossref]
  29. R. H. Stolen, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).
  30. P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
    [Crossref]
  31. C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405 (1987).
    [Crossref]
  32. O. Legrand and C. Montes, “Apparent superluminous quasisolitons in stimulated Brillouin backscattering,” J. Phys. Coll. (Paris) (to be published).

1987 (3)

C. Montes and R. Pellat, “Inertial response to nonstationary stimulated Brillouin backscattering: damage of optical and plasma fibers,” Phys. Rev. A 36, 2976 (1987).
[Crossref] [PubMed]

M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A 36, 3862 (1987).
[Crossref] [PubMed]

C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405 (1987).
[Crossref]

1986 (3)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
[Crossref] [PubMed]

J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering: Implications for optical fibers,” Phys. Rev. A 34, 3940 (1986).
[Crossref] [PubMed]

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

1985 (2)

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606 (1985).
[Crossref]

A. Ya. Karasik and A. V. Luchnikov, “Generation of nanosecond radiation pulses as a result of stimulated Brillouin scattering in single-mode fiberglass waveguide,” Sov. J. Quantum Electron. 15, 877 (1985).
[Crossref]

1984 (1)

1983 (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10 (1983).

1982 (2)

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold,” Opt. Lett. 7, 509 (1982).
[Crossref] [PubMed]

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).
[Crossref]

1981 (1)

1980 (2)

D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5, 516 (1980).
[Crossref] [PubMed]

P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
[Crossref]

1979 (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
[Crossref]

1978 (2)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

1977 (2)

D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
[Crossref]

F. Chu and C. Karney, “Solution of the three-wave resonant equations with one wave heavily damped,” Phys. Fluids 20, 1728 (1977).
[Crossref]

1976 (2)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[Crossref]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
[Crossref]

1975 (1)

J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz,” Solid State Commun. 16, 279 (1975).
[Crossref]

1973 (1)

V. N. Lugovoy and V. N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam–Brillouin radiation in a laser resonator,” Opt. Acta 20, 165 (1973).
[Crossref]

1972 (1)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

1971 (1)

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175 (1971).
[Crossref]

1966 (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945 (1966).
[Crossref]

Agrawal, G. P.

M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A 36, 3862 (1987).
[Crossref] [PubMed]

Anliker, P.

P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
[Crossref]

Bar-Joseph, I.

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).
[Crossref]

Chodorow, M.

Chu, F.

F. Chu and C. Karney, “Solution of the three-wave resonant equations with one wave heavily damped,” Phys. Fluids 20, 1728 (1977).
[Crossref]

Coste, J.

C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405 (1987).
[Crossref]

J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering: Implications for optical fibers,” Phys. Rev. A 34, 3940 (1986).
[Crossref] [PubMed]

Cotter, D.

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10 (1983).

Dienes, A.

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

Ezekiel, S.

Fabelinskii, I. L.

I. L. Fabelinskii, “Stimulated molecular scattering of light,” in Molecular Scattering of Light, I. L. Fabelinskii, ed. (Plenum, New York, 1968), pp. 483–532; “Stimulated Mandelstam–Brillouin process,” in Nonlinear Optics, Vol. I of Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 363–418.
[Crossref]

Friesem, A. A.

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606 (1985).
[Crossref]

Fujii, Y.

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

Hamilton, D. S.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
[Crossref]

Hasegawa, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
[Crossref] [PubMed]

Heiman, D.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
[Crossref]

Hellwarth, R. W.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
[Crossref]

Hill, K. O.

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
[Crossref]

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[Crossref]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
[Crossref]

Hon, D. T.

Ippen, E. P.

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

Johnson, D. C.

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
[Crossref]

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[Crossref]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
[Crossref]

Johnson, R. V.

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175 (1971).
[Crossref]

Kaiser, W.

W. Kaiser and M. Maier, “Stimulated Mandelstam–Brillouin process,” in Laser Handbook 2, T. F. Arecchi and F. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1077.

Karasik, A. Ya.

A. Ya. Karasik and A. V. Luchnikov, “Generation of nanosecond radiation pulses as a result of stimulated Brillouin scattering in single-mode fiberglass waveguide,” Sov. J. Quantum Electron. 15, 877 (1985).
[Crossref]

Karney, C.

F. Chu and C. Karney, “Solution of the three-wave resonant equations with one wave heavily damped,” Phys. Fluids 20, 1728 (1977).
[Crossref]

Kawasaki, B. S.

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
[Crossref]

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[Crossref]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
[Crossref]

Labudde, P.

P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
[Crossref]

Lamb, G.

G. Lamb, in Elements of Soliton Theory, G. Lamb, ed. (Wiley, New York, 1980), p. 153.

Legrand, O.

O. Legrand and C. Montes, “Apparent superluminous quasisolitons in stimulated Brillouin backscattering,” J. Phys. Coll. (Paris) (to be published).

Lichtman, E.

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606 (1985).
[Crossref]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Luchnikov, A. V.

A. Ya. Karasik and A. V. Luchnikov, “Generation of nanosecond radiation pulses as a result of stimulated Brillouin scattering in single-mode fiberglass waveguide,” Sov. J. Quantum Electron. 15, 877 (1985).
[Crossref]

Lugovoy, V. N.

V. N. Lugovoy and V. N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam–Brillouin radiation in a laser resonator,” Opt. Acta 20, 165 (1973).
[Crossref]

Maier, M.

W. Kaiser and M. Maier, “Stimulated Mandelstam–Brillouin process,” in Laser Handbook 2, T. F. Arecchi and F. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1077.

Marburger, J. H.

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175 (1971).
[Crossref]

Montes, C.

C. Montes and R. Pellat, “Inertial response to nonstationary stimulated Brillouin backscattering: damage of optical and plasma fibers,” Phys. Rev. A 36, 2976 (1987).
[Crossref] [PubMed]

C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405 (1987).
[Crossref]

J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering: Implications for optical fibers,” Phys. Rev. A 34, 3940 (1986).
[Crossref] [PubMed]

O. Legrand and C. Montes, “Apparent superluminous quasisolitons in stimulated Brillouin backscattering,” J. Phys. Coll. (Paris) (to be published).

Pellat, R.

C. Montes and R. Pellat, “Inertial response to nonstationary stimulated Brillouin backscattering: damage of optical and plasma fibers,” Phys. Rev. A 36, 2976 (1987).
[Crossref] [PubMed]

Pelous, J.

J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz,” Solid State Commun. 16, 279 (1975).
[Crossref]

Ponikvar, D. R.

Potasek, M. J.

M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A 36, 3862 (1987).
[Crossref] [PubMed]

Shaw, H. J.

Silberberg, Y. S.

Stokes, L. F.

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).
[Crossref]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

R. H. Stolen, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

Streltsov, V. N.

V. N. Lugovoy and V. N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam–Brillouin radiation in a laser resonator,” Opt. Acta 20, 165 (1973).
[Crossref]

Tai, K.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
[Crossref] [PubMed]

Tang, C. L.

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945 (1966).
[Crossref]

Tomita, A.

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
[Crossref] [PubMed]

Vacher, R.

J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz,” Solid State Commun. 16, 279 (1975).
[Crossref]

Waarts, R. G.

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

I. Bar-Joseph, A. A. Friesem, E. Lichtman, and R. G. Waarts, “Steady and relaxation oscillations of stimulated Brillouin scattering in single-mode optical fibers,” J. Opt. Soc. Am. B 2, 1606 (1985).
[Crossref]

Weber, H. P.

P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
[Crossref]

Yaffe, H. H.

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

Appl. Phys. Lett. (4)

E. P. Ippen and R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539 (1972).
[Crossref]

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, “Cw Brillouin laser,” Appl. Phys. Lett. 28, 608 (1976).
[Crossref]

B. S. Kawasaki, D. C. Johnson, Y. Fujii, and K. O. Hill, “Bandwidth-limited operation of a mode-locked Brillouin parametric oscillator,” Appl. Phys. Lett. 32, 429 (1978).
[Crossref]

K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “Cw generation of multiple Stokes and anti-Stokes Brillouin-shifted frequencies,” Appl. Phys. Lett. 29, 185 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fibers,” IEEE J. Quantum Electron. QE-18, 1062 (1982).
[Crossref]

J. Appl. Phys. (1)

C. L. Tang, “Saturation and spectral characteristics of the Stokes emission in the stimulated Brillouin process,” J. Appl. Phys. 37, 2945 (1966).
[Crossref]

J. Opt. Commun. (1)

D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10 (1983).

J. Opt. Soc. Am. B (2)

Laser Part. Beams (1)

C. Montes and J. Coste, “Optical turbulence in multiple stimulated Brillouin backscattering,” Laser Part. Beams 5, 405 (1987).
[Crossref]

Opt. Acta (1)

V. N. Lugovoy and V. N. Streltsov, “Stimulated Raman radiation and stimulated Mandel’stam–Brillouin radiation in a laser resonator,” Opt. Acta 20, 165 (1973).
[Crossref]

Opt. Commun. (2)

I. Bar-Joseph, A. Dienes, A. A. Friesem, E. Lichtman, R. G. Waarts, and H. H. Yaffe, “Spontaneous mode locking of single and multi mode pumped SBS fiber lasers,” Opt. Commun. 59, 296 (1986).
[Crossref]

P. Labudde, P. Anliker, and H. P. Weber, “Transmission of narrow band high power laser radiation through optical fibers,” Opt. Commun. 32, 385 (1980).
[Crossref]

Opt. Lett. (3)

Phys. Fluids (1)

F. Chu and C. Karney, “Solution of the three-wave resonant equations with one wave heavily damped,” Phys. Fluids 20, 1728 (1977).
[Crossref]

Phys. Rev. A (5)

M. J. Potasek and G. P. Agrawal, “Self-amplitude-modulation of optical pulses in nonlinear dispersive fibers,” Phys. Rev. A 36, 3862 (1987).
[Crossref] [PubMed]

R. V. Johnson and J. H. Marburger, “Relaxation oscillations in stimulated Raman and Brillouin scattering,” Phys. Rev. A 4, 1175 (1971).
[Crossref]

J. Coste and C. Montes, “Asymptotic evolution of stimulated Brillouin scattering: Implications for optical fibers,” Phys. Rev. A 34, 3940 (1986).
[Crossref] [PubMed]

C. Montes and R. Pellat, “Inertial response to nonstationary stimulated Brillouin backscattering: damage of optical and plasma fibers,” Phys. Rev. A 36, 2976 (1987).
[Crossref] [PubMed]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Phys. Rev. B (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583 (1979).
[Crossref]

Phys. Rev. Lett. (1)

K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135 (1986).
[Crossref] [PubMed]

Radio Sci. (1)

D. C. Johnson, K. O. Hill, and B. S. Kawasaki, “Brillouin optical-fiber ring oscillator design,” Radio Sci. 12, 519 (1977).
[Crossref]

Solid State Commun. (1)

J. Pelous and R. Vacher, “Thermal Brillouin scattering measurements of the attenuation of longitudinal hypersounds in fused quartz,” Solid State Commun. 16, 279 (1975).
[Crossref]

Sov. J. Quantum Electron. (1)

A. Ya. Karasik and A. V. Luchnikov, “Generation of nanosecond radiation pulses as a result of stimulated Brillouin scattering in single-mode fiberglass waveguide,” Sov. J. Quantum Electron. 15, 877 (1985).
[Crossref]

Other (5)

W. Kaiser and M. Maier, “Stimulated Mandelstam–Brillouin process,” in Laser Handbook 2, T. F. Arecchi and F. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), p. 1077.

I. L. Fabelinskii, “Stimulated molecular scattering of light,” in Molecular Scattering of Light, I. L. Fabelinskii, ed. (Plenum, New York, 1968), pp. 483–532; “Stimulated Mandelstam–Brillouin process,” in Nonlinear Optics, Vol. I of Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), pp. 363–418.
[Crossref]

G. Lamb, in Elements of Soliton Theory, G. Lamb, ed. (Wiley, New York, 1980), p. 153.

R. H. Stolen, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

O. Legrand and C. Montes, “Apparent superluminous quasisolitons in stimulated Brillouin backscattering,” J. Phys. Coll. (Paris) (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Basic mounting set of the first stimulated Brillouin ring fiber oscillator: constant pump input.

Fig. 2
Fig. 2

Mounting set for the second stimulated Brillouin ring fiber oscillator: modulated pump input.

Fig. 3
Fig. 3

Typical stimulated Brillouin pulses obtained at the output of the oscillator of Fig. 1.

Fig. 4
Fig. 4

Mounting set for the observation of the backward power spectrum corresponding to the setup of Fig. 1.

Fig. 5
Fig. 5

Mounting set for the observation of the forward power spectrum corresponding to the setup of Fig. 1.

Fig. 6
Fig. 6

Schematic diagram of the backward power spectrum at a high pumping level (the length of each line is proportional to its intensity).

Fig. 7
Fig. 7

Schematic diagram of the forward power spectrum at a high pumping level (the length of each line is proportional to its intensity).

Fig. 8
Fig. 8

Temporal structure of the backward-stimulated Brillouin beam during ring oscillation showing a typical train of stimulated Brillouin pulses in the short-time range (200 nsec/division) where the emission is highly stable.

Fig. 9
Fig. 9

Long-time envelope scheme of the stimulated Brillouin pulses at a, low and b, high pump power levels.

Fig. 10
Fig. 10

Temporal structure of the forward-transmitted pump beam: a, without and b, with ring oscillation.

Fig. 11
Fig. 11

Numerical computation of the pure C3W-SBS problem governed by Eqs. (5)(7) for constant pump input P = 50 mW (and corresponding parameters of the second column of Table 1), and an initial bump condition for the Stokes background of amplitude |E2(x, 0)|max = 10−6 and width L/2. Time evolution for the amplitudes a, of the backscattered train of Stokes pulses |E2(x = 0, t)|; b, of the transmitted pump |Ei(x = L, t)|, which initially exhibits strong depletion and for long times reaches a quasi-constant small level.

Fig. 12
Fig. 12

Numerical computation for the C3W-SBS ring with constant pump input and the same parameters as for Fig. 1. Spatial distribution of the field envelope amplitudes in the fiber: |E1(x, t)| (long-dashed curves), |E2(x, t)| (solid curves), and |Es(x, t)| (short-dashed curves) at consecutive time intervals during one round-trip period τr = 50 in the transient regime of Fig. 11a. a, t = 230; b, t = 250; c, t = 270.

Fig. 13
Fig. 13

a, Magnification of part of Fig. 11a at the same time interval. The maximum Stokes amplitude is of order 1 (in Ep units) at t ~ 1000 and at this time presents four oscillations inside one period; it is of order 0.03 (in Ep units) at t ~ 3400 and at this time presents seven oscillations inside one period. b, Spatial distribution of the field envelope amplitudes |Ei(x, t)| in the fiber at time t = 1275 (solid curves) and at time t = 3750 (dashed curves), where the spatial envelope amplitudes tend to a monotonic quasi-steady distribution.

Fig. 14
Fig. 14

Numerical computation for the C3W-SBS-Kerr ring with constant pump input, taking into account the optical Kerr effect [Eqs. (11), (12), and (7)]. Kr = 6 × 10−3, and the other parameters correspond to those in the second column of Table 1. Spatial distribution of the field envelope amplitudes in the fiber: |E1(x, t)| (long-dashed curves), |E2(x, t)| (solid curves), and |Es(x, t)| (short-dashed curves) at three times separated by two round-trip periods τr = 50 around the Stokes pulse amplitude saturation. The Stokes envelopes show a fine structure. The figures represent the first two fifths of the fiber.

Fig. 15
Fig. 15

Numerical computation for the SBS ring with modulated pump input (without the optical Kerr effect): time evolution for the amplitudes of the backscattered train of Stokes pulses |E2(x = 0, t)|, which show a slow secular amplification after time t ~ 1000. (Data from first column of Table 1 with Kr = 0).

Fig. 16
Fig. 16

Numerical computation for the SBS-Kerr ring with modulated (MW) pump input (with the optical Kerr effect and data corresponding to those of the first column of Table 1 with Kr = 5 × 10−3): Time evolution for the amplitudes of the backscattered train of Stokes pulse |E2(x, = 0, t)|, which show a saturation at time t ~ 500. The asymptotic stage presents an amplitude |E2(x, t)|max 2.8.

Fig. 17
Fig. 17

a, Magnification of Fig. 16 showing several Stokes pulses |E2(0, t)|. b, Several transmitted pump pulses |E1(L, t)| showing depletion. c, Comparative time width of the backscattered Stokes pulse corresponding to the SBS ring of Fig. 15 (solid curve) and of the SBS-K ring of Figs. 16 and 17 (dashed curve).

Fig. 18
Fig. 18

Numerical computation for the SBS-Kerr ring with modulated pump input. Spatial distribution of the field envelope amplitudes in the fiber: |E1(x, t)| (long-dashed curves), |E2(x, t)| (solid curves), and |Es(x, t)| (short-dashed curves), at two consecutive times during one period.

Tables (1)

Tables Icon

Table 1 Computation Parameters for the Fiber Used in the Experimentsa

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

[ t 2 + 2 γ 1 t - ( c / n ) 2 x 2 ] E ˜ 1 = - ( 1 / n 2 ) t 2 [ ( / ρ ) ρ ˜ s E ˜ 2 ] ,
[ t 2 + 2 γ 2 t - ( c / n ) 2 x 2 ] E ˜ 2 = - ( 1 / n 2 ) t 2 [ ( / ρ ) ρ ˜ s * E ˜ 1 ] ,
( t 2 + 2 γ s t - c s 2 x 2 ) ρ ˜ s = - ( ρ 0 0 / 2 ) ( / ρ ) x 2 ( E ˜ 1 E 2 * ) .
t 2 - 2 i ω j t + t 2 - ω j 2 - 2 i ω j t - ω j 2 , x 2 ± 2 i k j x + x 2 - k j 2 ± 2 i k j x - k j 2 ,
K = ( 0 c n 7 2 ρ 0 c s ) 1 / 2 π p 12 λ
( t + x + μ e ) E 1 = - E 2 E s ,
( t - x + μ e ) E 2 = E 1 E s * ,
( t + μ ) E s = E 1 E 2 * .
[ x + ( n / c ) ( t + γ e ) ] Φ 1 = - g Φ 1 Φ 2 ,
[ x - ( n / c ) ( t + γ e ) ] Φ 2 = - g Φ 1 Φ 2 ,
g = 4 γ s 0 c 2 K 2 = 2 π n 7 p 12 2 c λ 2 ρ 0 c s Δ ν B = 4.62 × 10 - 11 m W - 1 ,
n = n 0 + n 2 E ˜ 2 / 2 ,
( t + x + μ e ) E 1 = - E 2 E s + i K r ( E 1 2 + 2 E 2 2 ) E 1 ,
( t - x + μ e ) E 2 = E 1 E s * + i K r ( 2 E 1 2 + E 2 2 ) E 2 ,
( t + μ ) E s = E 1 E 2 * ,
K r = n 2 ω E p / 2 K ,
T exp ( G P X ) = 1 X = - ln ( T ) / ( G P ) .
X 1 = L - X N ,
Δ N 1 = L - X N + X 1 ,
X N = L - X 1 = L + X 1 - Δ N 1 Δ N 1 = 2 X 1 = - 2 ln ( T ) / ( G P ) ,
Δ 12 + Δ 23 + + Δ N 1 = N Δ 12 = L = - 2 N ln ( T ) / ( G P ) N = - G P L / [ 2 ln ( T ) ] .
P = - 2 N ln ( T ) / ( G L ) ,
L = 83 m P = - 2 log ( 0.11 ) / ( 6.4 × 83 ) W = 8 mW .
E 1 ( 0 , t ) = E p + ρ E 1 ( L , t ) ,             E 2 ( L , t ) = ρ E 2 ( 0 , t ) ,
Φ 1 ( 0 , t ) = Φ in + ρ Φ 1 ( L , t ) ,             Φ 2 ( L , t ) = ρ Φ 2 ( 0 , t ) ,
Φ 2 ( 0 ) Φ 1 ( 0 ) = 1 - ρ exp { g L Φ 1 ( 0 ) [ 1 - Φ 2 ( 0 ) / Φ 1 ( 0 ) ] } 1 - ρ , Φ 1 ( 0 ) = Φ in 1 - ρ 2 exp { g L Φ 1 ( 0 ) [ 1 - Φ 2 ( 0 ) / Φ 1 ( 0 ) ] } .
E 1 ( 0 , t ) = E p [ 1 + cos ( 2 π t / τ r ) ] / 2 + f ρ E 1 ( L , t ) [ 1 - cos ( 2 π t / τ r ) ] / 2 , E 2 ( L , t ) = ρ E 2 ( 0 , t ) [ 1 - cos ( 2 π t / τ r ) ] / 2

Metrics