Abstract

We present a quantum theory of one-dimensional laser cooling of free atoms using a transition with a J = 0 ground state and a J = 1 excited state. This treatment is valid both for broad lines (recoil energy small compared with the energy width Γ of the excited level) and for narrow lines. For broad lines we recover the well-known cooling limit for a two-level transition (∼Γ/2), whereas for a narrow line the cooling limit is found to be of the order of the recoil energy. The stationary momentum distribution is obtained for both cases and is found to be close to the one obtained by Monte Carlo simulations.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband laser cooling on narrow transitions

H. Wallis and W. Ertmer
J. Opt. Soc. Am. B 6(11) 2211-2219 (1989)

Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji
J. Opt. Soc. Am. B 6(11) 2112-2124 (1989)

σ+–σ Optical molasses in a longitudinal magnetic field

M. Walhout, J. Dalibard, S. L. Rolston, and W. D. Phillips
J. Opt. Soc. Am. B 9(11) 1997-2007 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (93)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription