Abstract

The first observation to the author’s knowledge of optically excited stimulated emission in atomic hydrogen is described. The two-photon n = 1 → n = 3 transition of hydrogen atoms in low-pressure flames is excited with 205-nm radiation produced by using a beta barium borate crystal to frequency mix the fundamental and frequency-doubled radiation from a 615-nm pulsed dye laser. The resulting 656-nm n = 3 → n = 2 Balmer-α radiation is readily observable by eye as a coherent beam propagating in both the forward and reverse directions. We describe a variety of characteristics of the stimulated emission, comparing its behavior with simultaneous measurements of two-photon-excited fluorescence, and discuss the possibility that the stimulated-emission process may affect the quantum yield of fluorescence and ionization detection methods. Potential diagnostic applications of two-photon-excited stimulated-emission detection for measuring atomic hydrogen in flames are demonstrated, using simultaneous profile measurements of stimulated emission and fluorescence signals.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, “Multiphoton excitation techniques in combustion diagnostics,” in Process Diagnostics: Materials, Combustion, Fusion, A. K. Hays, A. C. Eckbreth, and G. A. Campbell, eds., Vol. 117 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.
  2. M. Aldén, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305 (1989).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989) pp. 1403–1411.
    [CrossRef]
  4. J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
    [CrossRef]
  5. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, and N. M. Laurendeau, “Two-photon-excited fluorescence measurement of hydrogen atoms in flames,” Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  6. J. E. M. Goldsmith, “Photochemical effects in 205-nm, two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 11, 416 (1986).
    [CrossRef] [PubMed]
  7. G. W. Erickson, “Energy levels of one-electron atoms,” J. Phys. Chem. Ref. Data 6, 831 (1977).
    [CrossRef]
  8. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities Volume I: Hydrogen through Neon, Natl. Stand. Ref. Data Series Natl Bur. Standard.4 (U.S. Government Printing Office, Washington, D.C., 1966).
  9. U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
    [CrossRef]
  10. K. Bockhasten, T. Lundholm, and O. Andrade, “Laser lines in atomic and molecular oxygen,” J. Opt. Soc. Am. 56, 1260 (1966).
    [CrossRef]
  11. G. J. Dezenberg and C. S. Willett, “New unidentified high-gain oscillation at 486.1 and 434.0 nm in the presence of neon,” IEEE J. Quantum Electron. QE-7, 491 (1971).
    [CrossRef]
  12. See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
    [CrossRef]
  13. L. Allen and G. I. Peters, “Superradiance, coherence brightening and amplified spontaneous emission,” Phys. Lett. 31A, 95 (1970).
  14. G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238 (1971).
    [CrossRef]
  15. L. Allen and G. I. Peters, “Amplified spontaneous emission II. The connection with laser theory,” J. Phys. A 4, 377 (1971).
    [CrossRef]
  16. L. Allen and G. I. Peters, “Amplified spontaneous emission III. Intensity and saturation,” J. Phys. A 4, 564 (1971).
    [CrossRef]
  17. L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031 (1973).
    [CrossRef]
  18. L. Allen, “Amplified spontaneous emission,” in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1973), pp. 467–490.
    [CrossRef]
  19. G. I. Peters and L. Allen, “Amplified spontaneous emission IV. Beam divergence and spatial coherence,” J. Phys. A 5, 546 (1972).
    [CrossRef]
  20. L. Allen and G. I. Peters, “Spectral distribution of amplified spontaneous emission,” J. Phys. A 5, 695 (1972).
    [CrossRef]
  21. J. E. M. Goldsmith, “Two-step saturated fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 10, 116 (1985).
    [CrossRef] [PubMed]
  22. See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
    [CrossRef]
  23. U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.
  24. M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
    [CrossRef]
  25. J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
    [CrossRef]
  26. M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
    [CrossRef]
  27. M. Aldén, Lund Institute of Technology, Lund, Sweden (personal communication).

1989 (2)

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305 (1989).
[CrossRef] [PubMed]

M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
[CrossRef]

1988 (2)

See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
[CrossRef]

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

1986 (1)

1985 (1)

1984 (1)

M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

1983 (1)

1981 (1)

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

1977 (1)

G. W. Erickson, “Energy levels of one-electron atoms,” J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

1976 (1)

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

1973 (1)

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031 (1973).
[CrossRef]

1972 (2)

G. I. Peters and L. Allen, “Amplified spontaneous emission IV. Beam divergence and spatial coherence,” J. Phys. A 5, 546 (1972).
[CrossRef]

L. Allen and G. I. Peters, “Spectral distribution of amplified spontaneous emission,” J. Phys. A 5, 695 (1972).
[CrossRef]

1971 (4)

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission II. The connection with laser theory,” J. Phys. A 4, 377 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission III. Intensity and saturation,” J. Phys. A 4, 564 (1971).
[CrossRef]

G. J. Dezenberg and C. S. Willett, “New unidentified high-gain oscillation at 486.1 and 434.0 nm in the presence of neon,” IEEE J. Quantum Electron. QE-7, 491 (1971).
[CrossRef]

1970 (1)

L. Allen and G. I. Peters, “Superradiance, coherence brightening and amplified spontaneous emission,” Phys. Lett. 31A, 95 (1970).

1966 (1)

Agrup, S.

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

Aldén, M.

M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
[CrossRef]

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305 (1989).
[CrossRef] [PubMed]

M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

M. Aldén, Lund Institute of Technology, Lund, Sweden (personal communication).

Allen, L.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031 (1973).
[CrossRef]

G. I. Peters and L. Allen, “Amplified spontaneous emission IV. Beam divergence and spatial coherence,” J. Phys. A 5, 546 (1972).
[CrossRef]

L. Allen and G. I. Peters, “Spectral distribution of amplified spontaneous emission,” J. Phys. A 5, 695 (1972).
[CrossRef]

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission II. The connection with laser theory,” J. Phys. A 4, 377 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission III. Intensity and saturation,” J. Phys. A 4, 564 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Superradiance, coherence brightening and amplified spontaneous emission,” Phys. Lett. 31A, 95 (1970).

L. Allen, “Amplified spontaneous emission,” in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1973), pp. 467–490.
[CrossRef]

Andrade, O.

Bengtsson, P.-E.

M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
[CrossRef]

Bittner, J.

U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
[CrossRef]

Bockhasten, K.

Bokor, J.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Dezenberg, G. J.

G. J. Dezenberg and C. S. Willett, “New unidentified high-gain oscillation at 486.1 and 434.0 nm in the presence of neon,” IEEE J. Quantum Electron. QE-7, 491 (1971).
[CrossRef]

Erickson, G. W.

G. W. Erickson, “Energy levels of one-electron atoms,” J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

Fakhmi, A. O.

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

Freeman, R. R.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Garrett, W. R.

See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
[CrossRef]

Glennon, B. M.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities Volume I: Hydrogen through Neon, Natl. Stand. Ref. Data Series Natl Bur. Standard.4 (U.S. Government Printing Office, Washington, D.C., 1966).

Goldsmith, J. E. M.

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305 (1989).
[CrossRef] [PubMed]

J. E. M. Goldsmith, “Photochemical effects in 205-nm, two-photon-excited fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 11, 416 (1986).
[CrossRef] [PubMed]

J. E. M. Goldsmith, “Two-step saturated fluorescence detection of atomic hydrogen in flames,” Opt. Lett. 10, 116 (1985).
[CrossRef] [PubMed]

J. E. M. Goldsmith, “Multiphoton excitation techniques in combustion diagnostics,” in Process Diagnostics: Materials, Combustion, Fusion, A. K. Hays, A. C. Eckbreth, and G. A. Campbell, eds., Vol. 117 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989) pp. 1403–1411.
[CrossRef]

Hertz, H.

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

Just, Th.

U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
[CrossRef]

King, G. B.

Kohse-Höinghaus, K.

U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
[CrossRef]

Korelev, F. A.

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

Laurendeau, N. M.

Loge, G. W.

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

Lucht, R. P.

Lundholm, T.

Martynov, V. V.

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

Meier, U.

U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
[CrossRef]

Moore, M. A.

See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
[CrossRef]

Odintsov, V. I.

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

Payne, M. G.

See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
[CrossRef]

Peters, G. I.

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031 (1973).
[CrossRef]

G. I. Peters and L. Allen, “Amplified spontaneous emission IV. Beam divergence and spatial coherence,” J. Phys. A 5, 546 (1972).
[CrossRef]

L. Allen and G. I. Peters, “Spectral distribution of amplified spontaneous emission,” J. Phys. A 5, 695 (1972).
[CrossRef]

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission III. Intensity and saturation,” J. Phys. A 4, 564 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission II. The connection with laser theory,” J. Phys. A 4, 377 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Superradiance, coherence brightening and amplified spontaneous emission,” Phys. Lett. 31A, 95 (1970).

Quick, C. R.

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

Salmon, J. T.

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities Volume I: Hydrogen through Neon, Natl. Stand. Ref. Data Series Natl Bur. Standard.4 (U.S. Government Printing Office, Washington, D.C., 1966).

Storz, R. H.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Sweeney, D. W.

Tiee, J. J.

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

Wallin, S.

M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

Wampler, F. B.

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

Wendt, W.

M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

Westblom, U.

M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
[CrossRef]

M. Aldén, U. Westblom, and J. E. M. Goldsmith, “Two-photon-excited stimulated emission from atomic oxygen in flames and cold gases,” Opt. Lett. 14, 305 (1989).
[CrossRef] [PubMed]

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

White, J. C.

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

Wiese, W. L.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities Volume I: Hydrogen through Neon, Natl. Stand. Ref. Data Series Natl Bur. Standard.4 (U.S. Government Printing Office, Washington, D.C., 1966).

Willett, C. S.

G. J. Dezenberg and C. S. Willett, “New unidentified high-gain oscillation at 486.1 and 434.0 nm in the presence of neon,” IEEE J. Quantum Electron. QE-7, 491 (1971).
[CrossRef]

Appl. Phys. B (1)

M. Aldén, S. Wallin, and W. Wendt, “Applications of two-photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. J. Dezenberg and C. S. Willett, “New unidentified high-gain oscillation at 486.1 and 434.0 nm in the presence of neon,” IEEE J. Quantum Electron. QE-7, 491 (1971).
[CrossRef]

J. Appl. Phys. (1)

J. J. Tiee, C. R. Quick, G. W. Loge, and F. B. Wampler, “Two-photon pumped CO B–A laser,” J. Appl. Phys. 63, 299 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. A (5)

G. I. Peters and L. Allen, “Amplified spontaneous emission IV. Beam divergence and spatial coherence,” J. Phys. A 5, 546 (1972).
[CrossRef]

L. Allen and G. I. Peters, “Spectral distribution of amplified spontaneous emission,” J. Phys. A 5, 695 (1972).
[CrossRef]

G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission II. The connection with laser theory,” J. Phys. A 4, 377 (1971).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission III. Intensity and saturation,” J. Phys. A 4, 564 (1971).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

G. W. Erickson, “Energy levels of one-electron atoms,” J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

Opt. Commun. (2)

See, for example, M. A. Moore, W. R. Garrett, and M. G. Payne, “Suppression of electronic hyper-Raman emission by four-wave mixing interference,” Opt. Commun. 68, 310 (1988), and references therein.
[CrossRef]

M. Aldén, P.-E. Bengtsson, and U. Westblom, “Detection of carbon atoms in flames using stimulated emission induced by two-photon laser excitation,” Opt. Commun. 71, 263 (1989).
[CrossRef]

Opt. Lett. (4)

Opt. Spectrosc. (1)

See, for example, F. A. Korelev, V. V. Martynov, V. I. Odintsov, and A. O. Fakhmi, “Stimulated and parametric emission in Rb vapor in two-photon excitation of 52D3/2,5/2 and 72S1/2 levels,” Opt. Spectrosc. 40, 600 (1976);J. Eggleston, J. Dallarosa, W. K. Bischel, J. Bokor, and C. K. Rhodes, “Generation of 16-μm radiation in 14NH3 by two-quantum excitation of the 2ν2−(7,5) state,” J. Appl. Phys. 50, 3867 (1979);H. Pummer, H. Egger, T. S. Luk, T. Srinivasan, and C. K. Rhodes, “Vacuum-ultraviolet stimulated emission from two-photon-excited molecular hydrogen,” Phys. Rev. A 28, 795 (1983);C. Cremer and G. Gerber, “Observation of superfluorescence and stimulated emission in Bi i after nonresonant two-photon pumping,” Appl. Phys. B 35, 7 (1984).
[CrossRef]

Phys. Lett. (1)

L. Allen and G. I. Peters, “Superradiance, coherence brightening and amplified spontaneous emission,” Phys. Lett. 31A, 95 (1970).

Phys. Rev. A (2)

J. Bokor, R. R. Freeman, J. C. White, and R. H. Storz, “Two-photon excitation of the n = 3 level in H and D atoms,” Phys. Rev. A 24, 612 (1981).
[CrossRef]

L. Allen and G. I. Peters, “Amplified spontaneous emission and external signal amplification in an inverted medium,” Phys. Rev. A 8, 2031 (1973).
[CrossRef]

Other (7)

L. Allen, “Amplified spontaneous emission,” in Coherence and Quantum Optics, L. Mandel and E. Wolf, eds. (Plenum, New York, 1973), pp. 467–490.
[CrossRef]

J. E. M. Goldsmith, “Multiphoton-excited fluorescence measurements of atomic hydrogen in low-pressure flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989) pp. 1403–1411.
[CrossRef]

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities Volume I: Hydrogen through Neon, Natl. Stand. Ref. Data Series Natl Bur. Standard.4 (U.S. Government Printing Office, Washington, D.C., 1966).

U. Meier, J. Bittner, K. Kohse-Höinghaus, and Th. Just, “Discussion of two-photon laser-excited fluorescence as a method for quantitative detection of oxygen atoms in flames,” in Twenty-Second Symposium(International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1887–1896.
[CrossRef]

M. Aldén, Lund Institute of Technology, Lund, Sweden (personal communication).

J. E. M. Goldsmith, “Multiphoton excitation techniques in combustion diagnostics,” in Process Diagnostics: Materials, Combustion, Fusion, A. K. Hays, A. C. Eckbreth, and G. A. Campbell, eds., Vol. 117 of Materials Research Society Symposium Proceedings (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.

U. Westblom, S. Agrup, M. Aldén, H. Hertz, and J. E. M. Goldsmith, “Properties of laser-induced stimulated emission for diagnostics purposes,” to be submitted to Appl. Opt.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy levels of atomic hydrogen (not to scale) relevant to 205-nm, two-photon-excited FL and SE.

Fig. 2
Fig. 2

Apparatus used to observe atomic-hydrogen two-photon-excited FL and SE processes in low-pressure flames.

Fig. 3
Fig. 3

Excitation scans of two-photon-excited atomic-hydrogen SE (solid curve) and FL (dashed curve) recorded simultaneously by using 900-μJ pulses in a rich (equivalence ratio 1.4), 72-Torr hydrogen–oxygen–argon flame.

Fig. 4
Fig. 4

Intensity dependences of two-photon-excited atomic-hydrogen SE (triangles) and FL (circles) recorded simultaneously in a lean (equivalence ratio 0.6), 72-Torr hydrogen–oxygen–argon flame. The dashed line is drawn with a slope of 2.

Fig. 5
Fig. 5

Atomic-hydrogen profiles measured in a rich (equivalence ratio 1.4), 72-Torr hydrogen–oxygen–argon flame. The SE and FL measurements are represented by filled and open symbols, respectively, measured at 300 μJ/pulse (circles) and at 800 μJ/pulse (triangles). The diamonds and the solid curve represent a profile taken from Ref. 3 measured by using two-step fluorescence detection.

Fig. 6
Fig. 6

Atomic-hydrogen profiles measured in a lean (equivalence ratio 0.6), 72-Torr hydrogen–oxygen–argon flame. The SE and FL measurements are represented by filled and open symbols, respectively, measured at 300 μJ/pulse (circles) and at 900 μJ/pulse (triangles). The diamonds and the solid curve represent a profile taken from Ref. 3 measured by using two-step fluorescence detection.

Metrics