Abstract

We have demonstrated 10% energy-conversion efficiency of 0.5-nsec FWHM laser pulses at 248 to 225 nm by an anti-Stokes process in hydrogen, using collimated (unfocused) laser beams. To accomplish this, we simultaneously seeded the Raman cell with a Stokes pulse that was 2–6% as intense as the pump at the phase-matching angle with respect to the pump beam axis. Under these conditions, a fully transient plane-wave calculation suggests that 44% energy-conversion efficiency is possible. Phase-front imperfections on the pump and Stokes beams are thought to limit the observed conversion efficiency. We present a simple model describing the effect of phase distortion on anti-Stokes production that agrees with our observations. Experimentally observed dynamic effects are in good agreement with theoretical predictions.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient anti-Stokes Raman conversion by four-wave mixing in gases

John J. Ottusch, Metin S. Mangir, and David A. Rockwell
J. Opt. Soc. Am. B 8(1) 68-77 (1991)

Efficient second Stokes Raman conversion in hydrogen

Christopher Reiser, T. D. Raymond, and R. B. Michie
J. Opt. Soc. Am. B 8(3) 562-569 (1991)

Anti-Stokes Raman conversion in silicon waveguides

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali
Opt. Express 11(22) 2862-2872 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (20)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription