Abstract

The process of high-gain image amplification in photorefractive crystals is investigated. We show that in the regime of large energy transfer, the spatially nonuniform depletion of the pump wave results in the introduction of distortions into the amplified output image. This distortion mechanism and its dependence on the characteristics of the image to be amplified are described theoretically through numerical solutions of the coupled-wave equations for image-bearing beams. The numerical results are then checked experimentally in photorefractive BaTiO3.

© 1989 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fainman, C. C. Guest, S. H. Lee, “Optical digital logic operation by two-beam coupling in photorefractive materials,” Appl. Opt. 25, 1598–1603 (1986).
    [CrossRef]
  2. A. Chiou, P. Yeh, J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
    [CrossRef] [PubMed]
  3. I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.
  4. L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
    [CrossRef]
  5. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
    [CrossRef]
  6. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, B. Shu, “Multibeam coupling in photorefractive SBN:Ce,” Opt. Lett. 13, 1020–1022 (1988).
    [CrossRef] [PubMed]
  7. M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
    [CrossRef]
  8. F. Vachss, L. Hesselink, “Selective enhancement of spatial harmonics of a photorefractive grating,” J. Opt. Soc. Am. B 5, 1814–1821 (1988).
    [CrossRef]
  9. F. Vachss, “Non-linear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).
  10. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  11. T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
    [CrossRef]
  12. C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).
  13. M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
    [CrossRef]
  14. P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  15. F. Vachss, L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5, 690–701 (1988).
    [CrossRef]
  16. D. A. Temple, C. Warde, “High-order anisotropic diffraction in photorefractive crystals,” J. Opt. Soc. Am. B 5, 1800–1805 (1988).
    [CrossRef]
  17. L. M. Connors, “Optical mixing in photorefractive media with applications to real-time holography and phase conjugation,” Ph.D. dissertation (Queen Elizabeth College, University of London, London, 1984).
  18. F. Vachss, P. Yeh, “Image degradation and preservation in photorefractive amplifiers,” in Digest of 1988 Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988).

1988 (5)

1987 (1)

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

1986 (1)

1985 (2)

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

1982 (1)

L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
[CrossRef]

1979 (3)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Beckwith, P.

I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.

Bender, C. M.

C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

Chiou, A.

Christian, W.

I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.

Connors, L. M.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
[CrossRef]

L. M. Connors, “Optical mixing in photorefractive media with applications to real-time holography and phase conjugation,” Ph.D. dissertation (Queen Elizabeth College, University of London, London, 1984).

Cory, W. K.

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Ewbank, M.

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Fainman, Y.

Feinberg, J.

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Fiddy, M. A.

L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
[CrossRef]

Foote, P. D.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Gaylord, T. K.

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Guest, C. C.

Hall, T. J.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
[CrossRef]

Hesselink, L.

Hong, J.

Huignard, J. P.

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Jaura, R.

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Khoshnevisan, M.

I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Lee, S. H.

Liu, L.

Ma, J.

Magnusson, R.

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

McMichael, I.

I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.

Moharam, M. G.

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Neurgaonkar, R. R.

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Orszag, S. A.

C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

Rajbenbach, H.

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Refregier, P.

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Shu, B.

Solymar, L.

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Temple, D. A.

Vachss, F.

F. Vachss, L. Hesselink, “Selective enhancement of spatial harmonics of a photorefractive grating,” J. Opt. Soc. Am. B 5, 1814–1821 (1988).
[CrossRef]

F. Vachss, L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5, 690–701 (1988).
[CrossRef]

F. Vachss, P. Yeh, “Image degradation and preservation in photorefractive amplifiers,” in Digest of 1988 Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988).

F. Vachss, “Non-linear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

Wang, Z.

Warde, C.

Wu, S.

Xu, L.

Yeh, P.

A. Chiou, P. Yeh, J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093–2096 (1988).
[CrossRef] [PubMed]

F. Vachss, P. Yeh, “Image degradation and preservation in photorefractive amplifiers,” in Digest of 1988 Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988).

Young, L.

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

L. M. Connors, T. J. Hall, M. A. Fiddy, “On coupled-wave theory of two-beam self-diffraction,” Appl. Phys. B 28, 31–35 (1982).
[CrossRef]

Ferroelectrics (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, II: beam coupling,” Ferroelectrics 22, 961–964 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals, I: steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (3)

M. G. Moharam, T. K. Gaylord, R. Magnusson, L. Young, “Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths,” J. Appl. Phys. 50, 5642–5651 (1979).
[CrossRef]

M. Ewbank, R. R. Neurgaonkar, W. K. Cory, J. Feinberg, “Photorefractive properties of strontium barium niobate,” J. Appl. Phys. 62, 374–380 (1987).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, J. P. Huignard, “Two beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

T. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, “The photorefractive effect: a review,” Prog. Quantum Electron. 10, 77–146 (1985).
[CrossRef]

Other (5)

C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978).

L. M. Connors, “Optical mixing in photorefractive media with applications to real-time holography and phase conjugation,” Ph.D. dissertation (Queen Elizabeth College, University of London, London, 1984).

F. Vachss, P. Yeh, “Image degradation and preservation in photorefractive amplifiers,” in Digest of 1988 Optical Society of America Annual Meeting (Optical Society of America, Washington, D.C., 1988).

F. Vachss, “Non-linear holographic response in photorefractive materials,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1988).

I. McMichael, M. Khoshnevisan, P. Beckwith, W. Christian, “Non-linear ranging imager,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1988), pp. 218–219.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics