Abstract

We present a detailed characterization of the output of passive semiconductor-based optical limiters. These devices utilize two-photon absorption along with photogenerated carrier defocusing within the material to limit the output fluence and irradiance. In addition to protecting downstream optical components, the focusing geometry combined with these nonlinearities makes the devices self-protecting. Such devices have a broad working wavelength range since both the initial two-photon absorption and the subsequent carrier refraction are slowly varying funtions of wavelength. For example, ZnSe should have a useful range of from 0.5 to 0.85 μm. In this material we have observed the onset of limiting at input powers as low as 80 W when using 10-nsec, 0.53 μm input pulses. At the same wavelength, when 30 psec pulses into a monolithic ZnSe limiter are used, limiting begins at ≃300 W or 10 nJ. We also monitored the output spatial energy distribution along with the temporal response at each position, using a 2-psec-resolution streak camera. We found that the output fluence along with the output irradiance is effectively limited below detector damage thresholds over an input range of 4 orders of magnitude. Additionally, since both two-photon absorption and the associated self-defocusing increase with decreasing band-gap energy, similar devices using narrow-gap semiconductors should have considerably lower limiting thresholds.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing, and self-modulation of laser beams,” in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1151–1228.
  2. E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).
  3. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).
  4. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
    [Crossref]
  5. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
    [Crossref]
  6. C. E. Rieckhoff, “Self-induced divergence of cw laser beams in liquids—a new nonlinear effect in the propagation of light,” Appl. Phys. Lett. 9, 87 (1966).
    [Crossref]
  7. R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
    [Crossref]
  8. M. J. Soileau, “Passive intensity limiter based on nonlinear optics,” J. Opt. Soc. Am. 70, 1051 (A) (1980).
  9. M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
    [Crossref]
  10. E. P. Ippen and C. V. Shank “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92 (1975).
    [Crossref]
  11. M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, and E. W. Van Stryland, “Self-focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396 (1985).
    [Crossref] [PubMed]
  12. D. V. G. L. Narashimha Rao and S. Jayaraman, “Self-focusing of laser light in the isotropic phase of a nematic liquid crystal,” Appl. Phys. Lett. 23, 539 (1973).
    [Crossref]
  13. G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277 (1974).
    [Crossref]
  14. I. C. Khoo, “Nonlinear light scattering by laser- and dc-field-induced molecular reorientations in nematic-liquid-crystal films,” Phys. Rev. A 25, 1040 (1982).
    [Crossref]
  15. M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
    [Crossref]
  16. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, and A. E. Kaplan, “Optical bistability based on self-focusing,” Opt. Lett. 6, 345 (1981);also J. E. Bjorkholm, P. W. Smith, and W. J. Tomlinson, “Optical bistability based on self-focusing: an approximate analysis,” IEEE J. Quantum Electron. QE-18, 2016 (1982).
    [Crossref] [PubMed]
  17. D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
    [Crossref]
  18. J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
    [Crossref]
  19. T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, “Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon,” Opt. Lett. 9, 291 (1984).
    [Crossref] [PubMed]
  20. J. M. Ralston and K. R. Chang, “Optical limiting in semiconductors,” Appl. Phys. Lett. 15, 164 (1969).
    [Crossref]
  21. A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
    [Crossref]
  22. A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
    [Crossref]
  23. T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
    [Crossref]
  24. D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).
  25. D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315 (1988).
    [Crossref] [PubMed]
  26. V. S. Butylkin, A. E. Kaplan, and Yu. G. Kronopulo, “Possibility of observing self-focusing due to the stimulated Raman effect,” Radiophys. Quantum Electron. 12, 692 (1969).
    [Crossref]
  27. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
    [Crossref] [PubMed]
  28. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
    [Crossref]
  29. J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
    [Crossref]
  30. S. Guha, E. W. Van Stryland, and M. J. Soileau, “Self-defocusing in CdSe induced by charge carriers created by two-photon absorption,” Opt. Lett. 10, 285 (1985).
    [Crossref] [PubMed]
  31. J. A. Hermann, “Beam propagation and optical power limiting with nonlinear media,” J. Opt. Soc. Am. B 1, 729 (1984).
    [Crossref]
  32. J. A. Hermann, “Simple model for a passive optical power limiter,” Opt. Acta 32, 541 (1985).
    [Crossref]
  33. D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
    [Crossref]

1988 (1)

1986 (2)

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

1985 (7)

J. A. Hermann, “Simple model for a passive optical power limiter,” Opt. Acta 32, 541 (1985).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
[Crossref] [PubMed]

S. Guha, E. W. Van Stryland, and M. J. Soileau, “Self-defocusing in CdSe induced by charge carriers created by two-photon absorption,” Opt. Lett. 10, 285 (1985).
[Crossref] [PubMed]

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, and E. W. Van Stryland, “Self-focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396 (1985).
[Crossref] [PubMed]

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

1984 (2)

1983 (2)

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
[Crossref]

1982 (1)

I. C. Khoo, “Nonlinear light scattering by laser- and dc-field-induced molecular reorientations in nematic-liquid-crystal films,” Phys. Rev. A 25, 1040 (1982).
[Crossref]

1981 (2)

1980 (1)

M. J. Soileau, “Passive intensity limiter based on nonlinear optics,” J. Opt. Soc. Am. 70, 1051 (A) (1980).

1978 (3)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

1975 (1)

E. P. Ippen and C. V. Shank “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92 (1975).
[Crossref]

1974 (1)

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277 (1974).
[Crossref]

1973 (1)

D. V. G. L. Narashimha Rao and S. Jayaraman, “Self-focusing of laser light in the isotropic phase of a nematic liquid crystal,” Appl. Phys. Lett. 23, 539 (1973).
[Crossref]

1969 (3)

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

V. S. Butylkin, A. E. Kaplan, and Yu. G. Kronopulo, “Possibility of observing self-focusing due to the stimulated Raman effect,” Radiophys. Quantum Electron. 12, 692 (1969).
[Crossref]

J. M. Ralston and K. R. Chang, “Optical limiting in semiconductors,” Appl. Phys. Lett. 15, 164 (1969).
[Crossref]

1967 (1)

R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
[Crossref]

1966 (1)

C. E. Rieckhoff, “Self-induced divergence of cw laser beams in liquids—a new nonlinear effect in the propagation of light,” Appl. Phys. Lett. 9, 87 (1966).
[Crossref]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

1964 (2)

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Aiello, P. F.

Akhmanov, S. A.

S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing, and self-modulation of laser beams,” in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1151–1228.

Auston, D. H.

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Bjorkholm, J. E.

Bloembergen, N.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Boggess, T. F.

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, “Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon,” Opt. Lett. 9, 291 (1984).
[Crossref] [PubMed]

Boyd, I. W.

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, “Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon,” Opt. Lett. 9, 291 (1984).
[Crossref] [PubMed]

Butylkin, V. S.

V. S. Butylkin, A. E. Kaplan, and Yu. G. Kronopulo, “Possibility of observing self-focusing due to the stimulated Raman effect,” Radiophys. Quantum Electron. 12, 692 (1969).
[Crossref]

Chang, K. R.

J. M. Ralston and K. R. Chang, “Optical limiting in semiconductors,” Appl. Phys. Lett. 15, 164 (1969).
[Crossref]

Damen, P. C.

R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
[Crossref]

Davis, B.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

Dempsey, J.

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

Geusic, J. E.

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Guha, S.

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

S. Guha, E. W. Van Stryland, and M. J. Soileau, “Self-defocusing in CdSe induced by charge carriers created by two-photon absorption,” Opt. Lett. 10, 285 (1985).
[Crossref] [PubMed]

Hagan, D. J.

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315 (1988).
[Crossref] [PubMed]

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

Hermann, J. A.

J. A. Hermann, “Simple model for a passive optical power limiter,” Opt. Acta 32, 541 (1985).
[Crossref]

J. A. Hermann, “Beam propagation and optical power limiting with nonlinear media,” J. Opt. Soc. Am. B 1, 729 (1984).
[Crossref]

Holah, G. D.

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

Ippen, E. P.

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

E. P. Ippen and C. V. Shank “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92 (1975).
[Crossref]

Jayaraman, S.

D. V. G. L. Narashimha Rao and S. Jayaraman, “Self-focusing of laser light in the isotropic phase of a nematic liquid crystal,” Appl. Phys. Lett. 23, 539 (1973).
[Crossref]

Ji, Wei

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

Kaplan, A. E.

Kar, A. K.

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

Keller, U.

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

Khokhlov, R. V.

S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing, and self-modulation of laser beams,” in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1151–1228.

Khoo, I. C.

I. C. Khoo, “Nonlinear light scattering by laser- and dc-field-induced molecular reorientations in nematic-liquid-crystal films,” Phys. Rev. A 25, 1040 (1982).
[Crossref]

Kronopulo, Yu. G.

V. S. Butylkin, A. E. Kaplan, and Yu. G. Kronopulo, “Possibility of observing self-focusing due to the stimulated Raman effect,” Radiophys. Quantum Electron. 12, 692 (1969).
[Crossref]

Leite, R. C. C.

R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Liu, P.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Mathew, J. G. H.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

McAffee, S.

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

Miller, A.

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Mohebi, M.

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Moss, S. C.

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, “Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon,” Opt. Lett. 9, 291 (1984).
[Crossref] [PubMed]

Narashimha Rao, D. V. G. L.

D. V. G. L. Narashimha Rao and S. Jayaraman, “Self-focusing of laser light in the isotropic phase of a nematic liquid crystal,” Appl. Phys. Lett. 23, 539 (1973).
[Crossref]

Pohlmann, J. L. W.

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

Porto, S. P. S.

R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Prettl, W.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

Prise, M. E.

D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Ralston, J. M.

J. M. Ralston and K. R. Chang, “Optical limiting in semiconductors,” Appl. Phys. Lett. 15, 164 (1969).
[Crossref]

Reali, G.

Rich, T. C.

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

Rieckhoff, C. E.

C. E. Rieckhoff, “Self-induced divergence of cw laser beams in liquids—a new nonlinear effect in the propagation of light,” Appl. Phys. Lett. 9, 87 (1966).
[Crossref]

Seaton, C. T.

D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Shank, C. V.

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

E. P. Ippen and C. V. Shank “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92 (1975).
[Crossref]

Sharp, E. J.

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

Shen, Y. R.

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277 (1974).
[Crossref]

Singh, S.

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

Smirl, A. L.

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

T. F. Boggess, S. C. Moss, I. W. Boyd, and A. L. Smirl, “Nonlinear-optical energy regulation by nonlinear refraction and absorption in silicon,” Opt. Lett. 9, 291 (1984).
[Crossref] [PubMed]

Smith, J.

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

Smith, P. W.

Smith, S. D.

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Soileau, M. J.

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315 (1988).
[Crossref] [PubMed]

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
[Crossref] [PubMed]

M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, and E. W. Van Stryland, “Self-focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396 (1985).
[Crossref] [PubMed]

S. Guha, E. W. Van Stryland, and M. J. Soileau, “Self-defocusing in CdSe induced by charge carriers created by two-photon absorption,” Opt. Lett. 10, 285 (1985).
[Crossref] [PubMed]

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
[Crossref]

M. J. Soileau, “Passive intensity limiter based on nonlinear optics,” J. Opt. Soc. Am. 70, 1051 (A) (1980).

Sukhorukov, A. P.

S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing, and self-modulation of laser beams,” in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1151–1228.

Teschke, O.

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

Tipping, D. W.

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

Tomlinson, W. J.

Van Stryland, E. W.

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315 (1988).
[Crossref] [PubMed]

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

S. Guha, E. W. Van Stryland, and M. J. Soileau, “Self-defocusing in CdSe induced by charge carriers created by two-photon absorption,” Opt. Lett. 10, 285 (1985).
[Crossref] [PubMed]

M. Mohebi, P. F. Aiello, G. Reali, M. J. Soileau, and E. W. Van Stryland, “Self-focusing in CS2 at 10.6 μm,” Opt. Lett. 10, 396 (1985).
[Crossref] [PubMed]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
[Crossref] [PubMed]

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
[Crossref]

Vanherzeele, H.

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
[Crossref] [PubMed]

Vanherzelle, H.

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

Walker, A. C.

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
[Crossref]

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

Williams, W. E.

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
[Crossref]

Wong, G. K. L.

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277 (1974).
[Crossref]

Wood, G.

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

Woodall, M. A.

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490 (1985).
[Crossref] [PubMed]

Wu, Y. Y.

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Self-protecting semiconductor optical limiters,” Opt. Lett. 13, 315 (1988).
[Crossref] [PubMed]

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

Appl. Phys. Lett. (8)

R. C. C. Leite, R. S. Moore, and J. R. Whinnery, “Low absorption measurements by means of the thermal lens effect using a He–Ne laser,” Appl. Phys. Lett. 5, 141 (1964).
[Crossref]

C. E. Rieckhoff, “Self-induced divergence of cw laser beams in liquids—a new nonlinear effect in the propagation of light,” Appl. Phys. Lett. 9, 87 (1966).
[Crossref]

R. C. C. Leite, S. P. S. Porto, and P. C. Damen, “The thermal lens effect as a power limiting device,” Appl. Phys. Lett. 10, 100 (1967).
[Crossref]

E. P. Ippen and C. V. Shank “Picosecond response of a high repetition rate CS2 optical Kerr gate,” Appl. Phys. Lett. 26, 92 (1975).
[Crossref]

D. V. G. L. Narashimha Rao and S. Jayaraman, “Self-focusing of laser light in the isotropic phase of a nematic liquid crystal,” Appl. Phys. Lett. 23, 539 (1973).
[Crossref]

J. M. Ralston and K. R. Chang, “Optical limiting in semiconductors,” Appl. Phys. Lett. 15, 164 (1969).
[Crossref]

A. C. Walker, A. K. Kar, Wei Ji, U. Keller, and S. D. Smith, “All-optical power limiting of CO2 laser pulses using cascaded optical bistable elements,” Appl. Phys. Lett. 48, 683 (1986).
[Crossref]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, “Optical bistability in InSb at room temperature with two photon excitation,” Appl. Phys. Lett. 42, 334 (1983).
[Crossref]

Bull. Am. Phys. Soc. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” Bull. Am. Phys. Soc. 119, 501 (1964).

IEEE J. Quantum Electron. (2)

T. F. Boggess, A. L. Smirl, S. C. Moss, I. W. Boyd, and E. W. Van Stryland, “Optical limiting in GaAs,” IEEE J. Quantum Electron. QE-21, 488 (1985).
[Crossref]

M. J. Soileau, W. E. Williams, and E. W. Van Stryland, “Optical power limiting with picosecond response time,” IEEE J. Quantum Electron. QE-19731 (1983);see also W. E. Williams, M. J. Soileau, and E. W. Van Stryland, “Optical switching and n2 measurements in CS2,” Opt. Commun. 50, 256 (1984).
[Crossref]

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3 (1965).
[Crossref]

J. Opt. Soc. Am. (1)

M. J. Soileau, “Passive intensity limiter based on nonlinear optics,” J. Opt. Soc. Am. 70, 1051 (A) (1980).

J. Opt. Soc. Am. A (1)

D. J. Hagan, E. W. Van Stryland, M. J. Soileau, and Y. Y. Wu, “Semiconductor optical limiters with large dynamic range,” J. Opt. Soc. Am. A 3(13), P105 (1986).

J. Opt. Soc. Am. B (1)

Mol. Cryst. Liq. Cryst. (1)

M. J. Soileau, S. Guha, W. E. Williams, E. W. Van Stryland, H. Vanherzeele, J. L. W. Pohlmann, E. J. Sharp, and G. Wood, “Studies of the nonlinear switching properties of liquid crystals with picosecond pulses,” Mol. Cryst. Liq. Cryst. 127, 321 (1985).
[Crossref]

Opt. Acta (1)

J. A. Hermann, “Simple model for a passive optical power limiter,” Opt. Acta 32, 541 (1985).
[Crossref]

Opt. Commun. (1)

J. Dempsey, J. Smith, G. D. Holah, and A. Miller, “Nonlinear absorption and pulse-shaping in InSb,” Opt. Commun. 26, 265 (1978);A. M. Johnson, C. R. Pidgeon, and J. Dempsey, “Frequency dependence of two-photon absorption in InSb and HgCdTe,” Phys. Rev. B 22, 825 (1980);C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller, “Two photon absorption in zinc-blende semiconductors,” Phys. Rev. Lett. 42, 1785 (1979).
[Crossref]

Opt. Eng. (1)

E. W. Van Stryland, H. Vanherzelle, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24, 613 (1985).

Opt. Lett. (6)

Phys. Rev. A (2)

G. K. L. Wong and Y. R. Shen, “Study of pretransitional behavior of laser-field-induced molecular alignment in isotropic nematic substances,” Phys. Rev. A 10, 1277 (1974).
[Crossref]

I. C. Khoo, “Nonlinear light scattering by laser- and dc-field-induced molecular reorientations in nematic-liquid-crystal films,” Phys. Rev. A 25, 1040 (1982).
[Crossref]

Phys. Rev. B (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, and N. Bloembergen, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[Crossref]

Phys. Rev. Lett. (2)

D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, “Bandgap-resonant nonlinear refraction in III-V semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[Crossref]

J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich, “Three photon stepwise optical limiting in silicon,” Phys. Rev. Lett. 19, 1126 (1969).
[Crossref]

Radiophys. Quantum Electron. (1)

V. S. Butylkin, A. E. Kaplan, and Yu. G. Kronopulo, “Possibility of observing self-focusing due to the stimulated Raman effect,” Radiophys. Quantum Electron. 12, 692 (1969).
[Crossref]

Solid State Electron. (1)

D. H. Auston, S. McAffee, C. V. Shank, E. P. Ippen, and O. Teschke, “Picosecond spectroscopy of semiconductors,” Solid State Electron. 21, 147 (1978).
[Crossref]

Other (1)

S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing, and self-modulation of laser beams,” in Laser Handbook, F. T. Arecchi and E. O. Schultz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1151–1228.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Fluence or irradiance output of an ideal optical limiter as a function of the input power or energy.

Fig. 2
Fig. 2

Schematic of the monolithic optical limiter showing optical paths for low (solid lines) and high (dashed lines) inputs.

Fig. 3
Fig. 3

Plot of the output of a monolithic ZnSe limiter (interpreted as the on-axis fluence detected through an aperture) as a function of the input energy of 30-psec FWHM, 0.53-μm pulses.

Fig. 4
Fig. 4

Logarithmic plot of the scaled 2PA coefficient β as a function of the band-gap energy Eg (in electron volts). Ep is nearly material independent (≃21 eV), F2 is a function of the ratio 2ℏω/Eg, and n is the refractive index. The straight line is a fit to the data within the dashed box for a line of fixed slope −3. The data to the right of the box are taken from Ref. 28 using the third (×) and fourth (●) harmonics of 1.06-μm picosecond pulses. The data to the left of the box are taken from Ref. 29 using 10-μm nanosecond pulses, which carefully accounted for free-carrier absorption.

Fig. 5
Fig. 5

Vidicon scan of 92-psec FWHM 1.06-μm pulses of spot radius w0 = 1.0 mm transmitted through a 2-mm-thick sample of CdSe and viewed at a distance of 0.5 m behind the sample. The dashed lines are for (a) 1 GW/cm2 and (b) 30 MW/cm2. The solid lines are theoretical fits for the defocusing per carrier. This figure is reproduced from Ref. 30.

Fig. 6
Fig. 6

Schematic drawing of the thick limiter geometry. The solid lines show linear beam propagation for low inputs, and the dashed lines show the beam for high inputs.

Fig. 7
Fig. 7

Plot of the limiting energy EL as a function of the distance behind the front surface of a 1-cm-thick slab of ZnSe to the linear focal position. The pulse width is 30 psec FWHM, and the beam size at the 7.5-cm focal-length lens is 0.9 mm.

Fig. 8
Fig. 8

Input/output characteristics of a ZnSe thick optical limiter showing (a) the linear transmission, (b) the effects of two-photon absorption (i.e., all energy collected), (c) a plot of the transmitted energy through an aperture (i.e., fluence in arbitrary units) as a function of the input 0.53-μm picosecond pulses.

Fig. 9
Fig. 9

Plot of the limiting energy EL as a function of the distance behind the front surface of a 1-cm-thick slab of ZnSe to the linear focal position. The pulse width is 18 nsec FWHM, and the beam size at the 4-cm focal-length lens is 2.5 mm.

Fig. 10
Fig. 10

Theoretical plot of the functional dependence of Δn [relation (8) in text] versus photon energy for ZnSe.

Fig. 11
Fig. 11

Transmitted fluence at 2.8 m behind the ZnSe monolithic limiter as detected by a vidicon as a function of position at various input energies.

Fig. 12
Fig. 12

Spatial energy distribution at 2.8 m behind the ZnSe monolithic limiter at various times as detected by a streak-camera–vidicon system for an input energy of 5.6 nJ.

Fig. 13
Fig. 13

Same as Fig. 12 for an input energy of 8.1 μJ.

Fig. 14
Fig. 14

Same as Fig. 12 for an input energy of 26 μJ.

Fig. 15
Fig. 15

Spatial energy distribution at 11 cm behind a thin (2-mm-thick) ZnSe sample at various times as detected by a streak-camera–vidicon system for an input energy of 15 μJ.

Fig. 16
Fig. 16

Temporal energy distribution at 2.8 m behind the ZnSe monolithic limiter at various positions in the beam. A reference pulse indicating the zero time and the original pulse width is shown at the top.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d I d z = α I β I 2
d Φ d z = γ N = 2 π λ Δ n ,
d N d t = β I 2 2 ω .
β E p F 2 ( 2 ω E g ) n 2 E g 3 ,
F 2 ( x ) = ( x 1 ) 3 / 2 / x 5 .
Δ n = ( 8 π P 2 e 2 N 3 n ( ω ) 2 E g ) 1 1 ( ω / E g ) 2 ,
N ( t ) = t ( β I 2 ( t ) 2 ω ) d t .
Δ n E g ( ω ) 8 ( 2 ω / E g 1 ) 3 / 2 1 ( ω / E g ) 2 .

Metrics