Abstract

We describe the development of laser optics utilizing liquid crystals. Devices discussed constitute passive optical elements for both low-power and high-power laser systems, operating in either the pulsed or cw mode. Designs and fabrication methods are given in detail for wave plates, circular polarizers, optical isolators, laser-blocking notch filters, and soft apertures. Performance data in the visible to near infrared show these devices to be useful alternatives to other technologies based on conventional glasses, crystals, or thin films. The issue of laser damage is examined on the basis of off-line threshold testing and daily use in OMEGA, the 24-beam Nd:glass laser system at the Laboratory for Laser Energetics. Results demonstrate that long-term survivability has been achieved.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. EM Chemicals, Inc., Hawthorne, New York; Hoffman-LaRoche, Nutley, New Jersey; Eastman Kodak Company, Rochester, New Yourk; Aldrich Chemical Company, Milwaukee, Wisconsin.
  2. S. D. Jacobs, “Liquid crystals for laser applications,” in Optical Materials Properties, CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Cleveland, Ohio, 1986), Vol. IV, pp. 409–465.
  3. H. L. deVries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219 (1951).
    [CrossRef]
  4. J. L. Fergason, “Liquid crystals,” Sci. Am. 211, 76 (1964).
    [CrossRef]
  5. One useful epoxy is 3M Scotch-Weld 2216 epoxy.
  6. See, for example, J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” Mol. Cryst. Liq. Cryst. Suppl. 1, 1 (1982).
  7. J. L. Fergason, Optical Shields, Ltd., 1390 Willow Road, Menlo Park, California 94025 (personal communication, September1987).
  8. S. D. Jacobs, “Liquid crystals as large aperture wave plates and circular polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. Soc. Photo-Opt. Instrum. Eng.307, 98 (1981).
    [CrossRef]
  9. Bellingham and Stanley, Kent, England, Model 60/HR Abbé refractmeter.
  10. CVI Laser Corporation, Albuquerque, New Mexico, Model C-95 CVI YAG-MAX laser.
  11. D. Kinzer, “An optical technique for measuring liquid crystal cell thickness,” Mol. Cryst. Liq. Cryst. Lett. 5, 147 (1985).
  12. S. T. Wu, U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48, 624 (1986).
    [CrossRef]
  13. S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.
  14. S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).
  15. S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
    [CrossRef]
  16. J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulator,” in Active Optical Devices, J. Tracy, ed. Proc. Soc. Photo-Opt. Instrum. Eng.202, 82 (1979).
    [CrossRef]
  17. J. L. Fergason, “Cholesteric structure I. Optical properties,” in Liquid Crystals, G. H. Brown, G. J. Dienes, M. M. Labes, eds. (Gordon & Breach, New York, 1967), p. 89.
  18. P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).
  19. T. J. Scheffer, “Twisted nematic display with cholesteric reflector,” J. Phys. D 8, 1441 (1975).
    [CrossRef]
  20. A. Thelen, “Design of optical minus filters,” J. Opt. Soc. Am. 61, 365 (1971).
    [CrossRef]
  21. J. R. Magarinos, D. J. Coleman, “Holographic mirrors,” Opt. Eng. 24, 769 (1985).
  22. J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
    [CrossRef]
  23. I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
    [CrossRef]
  24. V. R. Costich, B. C. Johnson, “Apertures to shape high power beams,” Laser Focus 10(9), 43 (1974).
  25. A. Penzkofer, W. Frohlich, “Apodizing of intense laser beams with saturable dyes,” Opt. Commun. 28, 197 (1979).
    [CrossRef]
  26. Y. Asahara, T. Izumitani, “Process of producing soft aperture filter,” U.S. Patent4,108,621 (August22, 1978).
  27. G. Dubé, “Progress in glass components for neodymium lasers,” in Advanced Laser Technology and Applications, L. Esterowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.335, 10 (1982).
    [CrossRef]
  28. V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
    [CrossRef]
  29. A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
    [CrossRef]
  30. E. W. S. Hee, “Fabrication of apodized apertures for laser beam attenuation,” Opt. Laser Technol. 7, 75 (1975).
    [CrossRef]
  31. S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
    [CrossRef]
  32. G. Dubé, “Total internal reflection apodizers,” Opt. Commun. 12, 344 (1974).
    [CrossRef]
  33. J.-C. Diels, “Apodized aperture using frustrated total reflection,” Appl. Opt. 14, 2810 (1975).
    [CrossRef] [PubMed]
  34. S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
    [CrossRef]
  35. G. Giuliani, Y. K. Park, R. L. Byer, “Radial birefringent element and its application to laser resonator design,” Opt. Lett. 5, 491 (1980).
    [CrossRef] [PubMed]
  36. J. M. Eggleston, G. Giuliani, R. L. Byer, “Radial intensity filters using radial birefringent elements,” J. Opt. Soc. Am. 71, 1264 (1981).
    [CrossRef]
  37. B. J. Feldman, S. J. Gitomer, “Annular lens soft aperture for high power laser systems,” Appl. Opt. 16, 1484 (1977).
    [CrossRef]
  38. J. T. Hunt, J. A. Glaze, W. W. Simmons, P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053 (1978).
    [CrossRef] [PubMed]
  39. S. D. Jacobs, K. A. Cerqua, “Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths,” U.S. Patent4,679,911 (July14, 1987).
  40. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.
  41. J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
    [CrossRef]
  42. M. C. Staggs, F. Rainer, “Damage thresholds of fused silica, plastics and KDP measured with 0.6 μs, 355-nm pulses,” Natl. Bur. Stand. (U.S.) Spec. Pub. 688, 84 (1985).
  43. Lawrence Liuermore National Laboratories Annual Report (Lawrence Livermore Laboratory, Livermore, Calif., 1983), pp. 6–60.
  44. A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
    [CrossRef]
  45. I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
    [CrossRef]
  46. S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).
  47. P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
    [CrossRef]
  48. M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
    [CrossRef]
  49. K. Y. Wong, A. F. Garito, “Third-harmonic-generation study of orientational order in nematic liquid-crystals,” Phys. Rev. 34, 5051 (1986).
    [CrossRef]
  50. A Lambda 9 spectrophotometer from Perkin-Elmer, Inc., Norwalk, Connecticut, was used.

1987 (3)

I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
[CrossRef]

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

1986 (4)

K. Y. Wong, A. F. Garito, “Third-harmonic-generation study of orientational order in nematic liquid-crystals,” Phys. Rev. 34, 5051 (1986).
[CrossRef]

P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
[CrossRef]

S. T. Wu, U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48, 624 (1986).
[CrossRef]

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

1985 (3)

D. Kinzer, “An optical technique for measuring liquid crystal cell thickness,” Mol. Cryst. Liq. Cryst. Lett. 5, 147 (1985).

J. R. Magarinos, D. J. Coleman, “Holographic mirrors,” Opt. Eng. 24, 769 (1985).

M. C. Staggs, F. Rainer, “Damage thresholds of fused silica, plastics and KDP measured with 0.6 μs, 355-nm pulses,” Natl. Bur. Stand. (U.S.) Spec. Pub. 688, 84 (1985).

1984 (1)

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

1983 (2)

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

1982 (2)

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

See, for example, J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” Mol. Cryst. Liq. Cryst. Suppl. 1, 1 (1982).

1981 (2)

J. M. Eggleston, G. Giuliani, R. L. Byer, “Radial intensity filters using radial birefringent elements,” J. Opt. Soc. Am. 71, 1264 (1981).
[CrossRef]

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

1980 (1)

1979 (1)

A. Penzkofer, W. Frohlich, “Apodizing of intense laser beams with saturable dyes,” Opt. Commun. 28, 197 (1979).
[CrossRef]

1978 (2)

J. T. Hunt, J. A. Glaze, W. W. Simmons, P. A. Renard, “Suppression of self-focusing through low-pass spatial filtering and relay imaging,” Appl. Opt. 17, 2053 (1978).
[CrossRef] [PubMed]

S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
[CrossRef]

1977 (1)

1976 (1)

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

1975 (3)

E. W. S. Hee, “Fabrication of apodized apertures for laser beam attenuation,” Opt. Laser Technol. 7, 75 (1975).
[CrossRef]

T. J. Scheffer, “Twisted nematic display with cholesteric reflector,” J. Phys. D 8, 1441 (1975).
[CrossRef]

J.-C. Diels, “Apodized aperture using frustrated total reflection,” Appl. Opt. 14, 2810 (1975).
[CrossRef] [PubMed]

1974 (3)

G. Dubé, “Total internal reflection apodizers,” Opt. Commun. 12, 344 (1974).
[CrossRef]

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

V. R. Costich, B. C. Johnson, “Apertures to shape high power beams,” Laser Focus 10(9), 43 (1974).

1971 (2)

J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
[CrossRef]

A. Thelen, “Design of optical minus filters,” J. Opt. Soc. Am. 61, 365 (1971).
[CrossRef]

1964 (1)

J. L. Fergason, “Liquid crystals,” Sci. Am. 211, 76 (1964).
[CrossRef]

1951 (1)

H. L. deVries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219 (1951).
[CrossRef]

Abate, J. A.

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

Adams, J.

J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
[CrossRef]

Allender, D. W.

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

Arifzhanov, S. B.

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

Asahara, Y.

Y. Asahara, T. Izumitani, “Process of producing soft aperture filter,” U.S. Patent4,108,621 (August22, 1978).

Bahr, R.

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

Bauer, K. A.

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

Bossert, R. P.

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

Byer, R. L.

Campillo, A. J.

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

Carpenter, B.

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

Cerqua, K. A.

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

S. D. Jacobs, K. A. Cerqua, “Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths,” U.S. Patent4,679,911 (July14, 1987).

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Cognard, J.

See, for example, J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” Mol. Cryst. Liq. Cryst. Suppl. 1, 1 (1982).

Coleman, D. J.

J. R. Magarinos, D. J. Coleman, “Holographic mirrors,” Opt. Eng. 24, 769 (1985).

Costich, V. R.

V. R. Costich, B. C. Johnson, “Apertures to shape high power beams,” Laser Focus 10(9), 43 (1974).

Dailey, J.

J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
[CrossRef]

deGennes, P. G.

P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

deVries, H. L.

H. L. deVries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219 (1951).
[CrossRef]

Diels, J.-C.

Dubé, G.

G. Dubé, “Total internal reflection apodizers,” Opt. Commun. 12, 344 (1974).
[CrossRef]

G. Dubé, “Progress in glass components for neodymium lasers,” in Advanced Laser Technology and Applications, L. Esterowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.335, 10 (1982).
[CrossRef]

Efron, U.

S. T. Wu, U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48, 624 (1986).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

Eggleston, J. M.

Elser, W.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulator,” in Active Optical Devices, J. Tracy, ed. Proc. Soc. Photo-Opt. Instrum. Eng.202, 82 (1979).
[CrossRef]

Feldman, B. J.

Fergason, J. L.

J. L. Fergason, “Liquid crystals,” Sci. Am. 211, 76 (1964).
[CrossRef]

J. L. Fergason, Optical Shields, Ltd., 1390 Willow Road, Menlo Park, California 94025 (personal communication, September1987).

J. L. Fergason, “Cholesteric structure I. Optical properties,” in Liquid Crystals, G. H. Brown, G. J. Dienes, M. M. Labes, eds. (Gordon & Breach, New York, 1967), p. 89.

Frohlich, W.

A. Penzkofer, W. Frohlich, “Apodizing of intense laser beams with saturable dyes,” Opt. Commun. 28, 197 (1979).
[CrossRef]

Ganeev, R. A.

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

Garito, A. F.

K. Y. Wong, A. F. Garito, “Third-harmonic-generation study of orientational order in nematic liquid-crystals,” Phys. Rev. 34, 5051 (1986).
[CrossRef]

Gingold, R. J.

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Gitomer, S. J.

Giuliani, G.

Glaze, J. A.

Guha, S.

M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Gulamov, A. A.

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

Haas, W.

J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
[CrossRef]

Hee, E. W. S.

E. W. S. Hee, “Fabrication of apodized apertures for laser beam attenuation,” Opt. Laser Technol. 7, 75 (1975).
[CrossRef]

Hess, L. D.

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

Hunt, J. T.

Izumitani, T.

Y. Asahara, T. Izumitani, “Process of producing soft aperture filter,” U.S. Patent4,108,621 (August22, 1978).

Jacobs, S. D.

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

S. D. Jacobs, K. A. Cerqua, “Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths,” U.S. Patent4,679,911 (July14, 1987).

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

S. D. Jacobs, “Liquid crystals for laser applications,” in Optical Materials Properties, CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Cleveland, Ohio, 1986), Vol. IV, pp. 409–465.

S. D. Jacobs, “Liquid crystals as large aperture wave plates and circular polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. Soc. Photo-Opt. Instrum. Eng.307, 98 (1981).
[CrossRef]

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Johnson, B. C.

V. R. Costich, B. C. Johnson, “Apertures to shape high power beams,” Laser Focus 10(9), 43 (1974).

Kessler, T. J.

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Khoo, I. C.

I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
[CrossRef]

Kinzer, D.

D. Kinzer, “An optical technique for measuring liquid crystal cell thickness,” Mol. Cryst. Liq. Cryst. Lett. 5, 147 (1985).

Klemm, S.

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

Krasyuk, I. K.

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

Kryzhanovskii, V. I.

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

Laverty, P. J.

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Lee, M. A.

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

Lukishova, S. G.

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

Madden, P. A.

P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
[CrossRef]

Magarinos, J. R.

J. R. Magarinos, D. J. Coleman, “Holographic mirrors,” Opt. Eng. 24, 769 (1985).

Manenkov, A. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Marshall, K. L.

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Matyushin, G. A.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Michael, R. R.

I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
[CrossRef]

Milam, D.

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

Nechitailo, V. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Newnam, B. E.

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

Papernyi, S. B.

S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
[CrossRef]

Park, Y. K.

Pashinin, P. P.

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

Pasko, J. G.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulator,” in Active Optical Devices, J. Tracy, ed. Proc. Soc. Photo-Opt. Instrum. Eng.202, 82 (1979).
[CrossRef]

Penzkofer, A.

A. Penzkofer, W. Frohlich, “Apodizing of intense laser beams with saturable dyes,” Opt. Commun. 28, 197 (1979).
[CrossRef]

Prokhorov, A. M.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

Rainer, F.

M. C. Staggs, F. Rainer, “Damage thresholds of fused silica, plastics and KDP measured with 0.6 μs, 355-nm pulses,” Natl. Bur. Stand. (U.S.) Spec. Pub. 688, 84 (1985).

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

Redkore-chev, V. I.

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

Renard, P. A.

Rinefierd, J. M.

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

Risser, S.

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

Saunders, F. C.

P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
[CrossRef]

Scheffer, T. J.

T. J. Scheffer, “Twisted nematic display with cholesteric reflector,” J. Phys. D 8, 1441 (1975).
[CrossRef]

Scott, A. M.

P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
[CrossRef]

Sedov, B. M.

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

Seka, W.

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

Serebryakov, V. A.

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
[CrossRef]

Shapiro, S. L.

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

Shirkov, A. V.

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

Simmons, W. W.

Soileau, M. J.

M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Staggs, M. C.

M. C. Staggs, F. Rainer, “Damage thresholds of fused silica, plastics and KDP measured with 0.6 μs, 355-nm pulses,” Natl. Bur. Stand. (U.S.) Spec. Pub. 688, 84 (1985).

Stokowski, S.

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

Swain, J.

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

Thelen, A.

Topp, M.

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

Tracy, J.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulator,” in Active Optical Devices, J. Tracy, ed. Proc. Soc. Photo-Opt. Instrum. Eng.202, 82 (1979).
[CrossRef]

Tsaprilov, A. S.

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

Tsvetkov, A. D.

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

Usmanov, T.

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

van Stryland, E. W.

M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Wong, K. Y.

K. Y. Wong, A. F. Garito, “Third-harmonic-generation study of orientational order in nematic liquid-crystals,” Phys. Rev. 34, 5051 (1986).
[CrossRef]

Wu, S. T.

S. T. Wu, U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48, 624 (1986).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

Yan, P. Y.

I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
[CrossRef]

Yashin, V. E.

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
[CrossRef]

Acta Crystallogr. (1)

H. L. deVries, “Rotatory power and other optical properties of certain liquid crystals,” Acta Crystallogr. 4, 219 (1951).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. T. Wu, U. Efron, “Optical properties of thin nematic liquid crystal cells,” Appl. Phys. Lett. 48, 624 (1986).
[CrossRef]

S. T. Wu, U. Efron, L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

J. Swain, S. Stokowski, D. Milam, F. Rainer, “Improving the bulk laser damage resistance of KDP by pulsed laser irradiation,” Appl. Phys. Lett. 40, 350 (1982).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Khoo, R. R. Michael, P. Y. Yan, “Optically-induced molecular reorientation in nematic liquid-crystals and nonlinear optical processes in the nanoseconds regime,” IEEE J. Quantum Electron. QE-23, 267 (1987).
[CrossRef]

J. Appl. Phys. (1)

J. Adams, W. Haas, J. Dailey, “Cholesteric films as optical filters,” J. Appl. Phys. 42, 4096 (1971).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. D (1)

T. J. Scheffer, “Twisted nematic display with cholesteric reflector,” J. Phys. D 8, 1441 (1975).
[CrossRef]

Laser Focus (1)

V. R. Costich, B. C. Johnson, “Apertures to shape high power beams,” Laser Focus 10(9), 43 (1974).

Mol. Cryst. Liq. Cryst. (2)

S. Risser, S. Klemm, D. W. Allender, M. A. Lee, “Huckel model—calculations of polarizability and hyperpolarizability for conjugated molecules,” Mol. Cryst. Liq. Cryst. 150B, 631 (1987).

M. J. Soileau, E. W. van Stryland, S. Guha, “Nonlinear optical properties of liquid crystals in the isotropic phase,” Mol. Cryst. Liq. Cryst. 143, 139 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst. Lett. (1)

D. Kinzer, “An optical technique for measuring liquid crystal cell thickness,” Mol. Cryst. Liq. Cryst. Lett. 5, 147 (1985).

Mol. Cryst. Liq. Cryst. Suppl. (1)

See, for example, J. Cognard, “Alignment of nematic liquid crystals and their mixtures,” Mol. Cryst. Liq. Cryst. Suppl. 1, 1 (1982).

Natl. Bur. Stand. (U.S.) Spec. Pub. (2)

S. D. Jacobs, K. A. Cerqua, T. J. Kessler, W. Seka, R. Bahr, “Retrofit of a high-power Nd:glass laser system with liquid crystal polarizers,” Natl. Bur. Stand. (U.S.) Spec. Pub. 727, 15-22 (1986).

M. C. Staggs, F. Rainer, “Damage thresholds of fused silica, plastics and KDP measured with 0.6 μs, 355-nm pulses,” Natl. Bur. Stand. (U.S.) Spec. Pub. 688, 84 (1985).

Opt. Acta (1)

P. A. Madden, F. C. Saunders, A. M. Scott, “Measurement of the nonlinear susceptibility of liquid crystal materials in the isotropic phase,” Opt. Acta 33, 405 (1986).
[CrossRef]

Opt. Commun. (3)

A. J. Campillo, B. Carpenter, B. E. Newnam, S. L. Shapiro, “Soft apertures for reducing damage in high-power laser-amplifier systems,” Opt. Commun. 10, 313 (1974).
[CrossRef]

G. Dubé, “Total internal reflection apodizers,” Opt. Commun. 12, 344 (1974).
[CrossRef]

A. Penzkofer, W. Frohlich, “Apodizing of intense laser beams with saturable dyes,” Opt. Commun. 28, 197 (1979).
[CrossRef]

Opt. Eng. (1)

J. R. Magarinos, D. J. Coleman, “Holographic mirrors,” Opt. Eng. 24, 769 (1985).

Opt. Laser Technol. (1)

E. W. S. Hee, “Fabrication of apodized apertures for laser beam attenuation,” Opt. Laser Technol. 7, 75 (1975).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

K. Y. Wong, A. F. Garito, “Third-harmonic-generation study of orientational order in nematic liquid-crystals,” Phys. Rev. 34, 5051 (1986).
[CrossRef]

Sci. Am. (1)

J. L. Fergason, “Liquid crystals,” Sci. Am. 211, 76 (1964).
[CrossRef]

Sov. J. Quantum Electron. (5)

S. B. Arifzhanov, R. A. Ganeev, A. A. Gulamov, V. I. Redkore-chev, T. Usmanov, “Formation of a beam of high optical quality in a multistage neodymium laser,” Sov. J. Quantum Electron. 11, 745 (1981).
[CrossRef]

V. I. Kryzhanovskii, B. M. Sedov, V. A. Serebryakov, A. D. Tsvetkov, V. E. Yashin, “Formation of the spatial structure of radiation in solid-state laser systems by apodizing and hard apertures,” Sov. J. Quantum Electron. 13, 194 (1983).
[CrossRef]

A. A. Manenkov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, A. S. Tsaprilov, “Nature of the cumulative effect in laser damage to optical materials,” Sov. J. Quantum Electron. 13, 1580 (1983).
[CrossRef]

I. K. Krasyuk, S. G. Lukishova, P. P. Pashinin, A. M. Prokhorov, A. V. Shirkov, “Formation of the radial distribution of intensity in a laser beam by ‘soft’ apertures,” Sov. J. Quantum Electron. 6, 725 (1976).
[CrossRef]

S. B. Papernyi, V. A. Serebryakov, V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8, 1165 (1978).
[CrossRef]

Other (17)

A Lambda 9 spectrophotometer from Perkin-Elmer, Inc., Norwalk, Connecticut, was used.

Y. Asahara, T. Izumitani, “Process of producing soft aperture filter,” U.S. Patent4,108,621 (August22, 1978).

G. Dubé, “Progress in glass components for neodymium lasers,” in Advanced Laser Technology and Applications, L. Esterowitz, ed., Proc. Soc. Photo-Opt. Instrum. Eng.335, 10 (1982).
[CrossRef]

Lawrence Liuermore National Laboratories Annual Report (Lawrence Livermore Laboratory, Livermore, Calif., 1983), pp. 6–60.

S. D. Jacobs, K. A. Cerqua, “Optical apparatus using liquid crystals for shaping the spatial intensity of optical beams having designated wavelengths,” U.S. Patent4,679,911 (July14, 1987).

S. D. Jacobs, K. A. Cerqua, K. L. Marshall, T. J. Kessler, R. J. Gingold, P. J. Laverty, M. Topp, “High power laser beam apodization using a liquid crystal soft aperture,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1986), paper THG2, p. 258.

One useful epoxy is 3M Scotch-Weld 2216 epoxy.

EM Chemicals, Inc., Hawthorne, New York; Hoffman-LaRoche, Nutley, New Jersey; Eastman Kodak Company, Rochester, New Yourk; Aldrich Chemical Company, Milwaukee, Wisconsin.

S. D. Jacobs, “Liquid crystals for laser applications,” in Optical Materials Properties, CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC Press, Cleveland, Ohio, 1986), Vol. IV, pp. 409–465.

J. L. Fergason, Optical Shields, Ltd., 1390 Willow Road, Menlo Park, California 94025 (personal communication, September1987).

S. D. Jacobs, “Liquid crystals as large aperture wave plates and circular polarizers,” in Polarizers and Applications, G. B. Trapani, ed., Proc. Soc. Photo-Opt. Instrum. Eng.307, 98 (1981).
[CrossRef]

Bellingham and Stanley, Kent, England, Model 60/HR Abbé refractmeter.

CVI Laser Corporation, Albuquerque, New Mexico, Model C-95 CVI YAG-MAX laser.

S. D. Jacobs, J. A. Abate, K. A. Bauer, R. P. Bossert, J. M. Rinefierd, “Liquid crystal isolator for fusion lasers,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1980), pp. 128–129.

J. G. Pasko, J. Tracy, W. Elser, “Liquid crystal infrared modulator,” in Active Optical Devices, J. Tracy, ed. Proc. Soc. Photo-Opt. Instrum. Eng.202, 82 (1979).
[CrossRef]

J. L. Fergason, “Cholesteric structure I. Optical properties,” in Liquid Crystals, G. H. Brown, G. J. Dienes, M. M. Labes, eds. (Gordon & Breach, New York, 1967), p. 89.

P. G. deGennes, The Physics of Liquid Crystals (Clarendon, Oxford, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Spontaneous organization of liquid-crystalline structures: (a) nematic phase, (b) cholesteric phase.

Fig. 2
Fig. 2

Selective reflection effect in the cholesteric structure.

Fig. 3
Fig. 3

Externally imposed alignment configurations for nematic (a and b) and cholesteric (c and d) compounds.

Fig. 4
Fig. 4

Measured retardance across the x and y axes of 100-mm-diameter liquid-crystal quarter-wave plate shows good uniformity across the device aperture.

Fig. 5
Fig. 5

Schematic diagram of liquid-crystal polarizer/isolator: LHC, left-handed chirality; RHC, right-handed chirality.

Fig. 6
Fig. 6

Base nematics and chiral additives.

Fig. 7
Fig. 7

Wavelength tuning with composition.

Fig. 8
Fig. 8

Spectral transmission through liquid-crystal polarizers (LCP’s): fluid path length, 11 μm.

Fig. 9
Fig. 9

Bandwidth of selective reflection for three blends at two wavelengths.

Fig. 10
Fig. 10

Blocking extinction and angular acceptance for LCP’s. Base nematic compound is identified in the figure.

Fig. 11
Fig. 11

Temperature sensitivity of selective reflection band for RH and LH fluid blends.

Fig. 12
Fig. 12

Concept and proof of concept for liquid-crystal notch filter at λ = 694 nm.

Fig. 13
Fig. 13

Spectral performance for a triple-wavelength notch filter composed of six fluid layers.

Fig. 14
Fig. 14

Laser-beam apodizer. A perfect apodizer truncates the wings of a Gaussian input without introducing diffraction effects. Good optical phase quality and intensity in the center of the beam are preserved.

Fig. 15
Fig. 15

Evolution of the concept for liquid-crystal soft aperture. By changing the shape of the central spacer element in a conventional laser-blocking notch filter, we can synthesize filters with radially varying transmission profiles. Blocking extinction, which originates from the selective reflection effect, varies from zero at element center to greater than 103 at the edge. Refractive-index matching between the fluids and the glass minimizes phase distortion.

Fig. 16
Fig. 16

Transmittance profiles for three wedged notch filter elements at λ = 1064, 800, 532 nm. Nominal Q factors are derived from the data for subsequent design calculations.

Fig. 17
Fig. 17

Design and measured performance for two liquid-crystal soft apertures.

Fig. 18
Fig. 18

Transmission and phase distortion profiles for soft-aperture cells: (a) SA-3, design λ = 532 nm; (b) SA-4, design λ = 800 nm.

Fig. 19
Fig. 19

Liquid-crystal soft-aperture flexibility. Because the selective reflection effect in liquid crystals is wavelength specific, liquid-crystal soft apertures may be stacked in tandem to operate on collinearly propagating laser beams whose wavelengths differ. Light at a given laser wavelength may be apodized with a unique clear-aperture size and soft-edge profile without affecting light at other wavelengths.

Fig. 20
Fig. 20

Reflectance near specular for a LCP. The probe beam was 1 mm in diameter and RH polarized at a wavelength of 1052 nm, and the angle of incidence was 10° from normal. An integrating sphere detector fitted with a 1-mm aperture measured reflectivity as a function of angle around an arc centered at 130 mm from the polarizer. Scans taken at four different sites on a 100-mm-diameter element are given.

Fig. 21
Fig. 21

Polarization characteristics of 133 diamond-rubbed, 100-mm-diameter, RH LCP’s at 1052 nm. Transmission is for LH circularly polarized light. The contrast ratio is for LH/RH circularly polarized light.

Fig. 22
Fig. 22

LCP damage from in-system use: (a) a burst that shows a high amount of scatter and often involves bubbles in the liquid crystal and chips in the glass surface at the center of the damage site; (b) a web that has lines of scatter radiating from a center; bubbles, if present, are usually at the ends of the arms.

Fig. 23
Fig. 23

Polarization characteristics of 120 100-mm RH LCP’s assembled in 1987 by using the improved process. Transmission is for LH circularly polarized light. The contrast is for LH/RH circularly polarized light at 1053 nm.

Fig. 24
Fig. 24

Number of shots with maximum energy 2.0–3.8 J/cm2 survived by 100-mm LCP’s during the development of the improved assembly process. Clean-room assembly process as described in the text began with circular polarizer 287.

Tables (9)

Tables Icon

Table 1 Properties of Various Wave-Plate Materials (λ = 1053 nm)

Tables Icon

Table 2 Low-Birefringence Nematics for Wave-Plate Fabrication (λ = 1053 nm, T = 22 ± 0.1°C; Values Are ±0.00005)

Tables Icon

Table 3 Measured Gap Thickness and (Calculated Retardance) at Six Sites Across Retarder QWP-2-860611

Tables Icon

Table 4 Comparison of Polarizer Technologies

Tables Icon

Table 5 Design Parameters for the Construction of Soft Apertures

Tables Icon

Table 6 Soft-Aperture Transmission-Profile Measurement Conditions

Tables Icon

Table 7 Properties and Values of Laser-Damage Resistance for Commercial Liquid Crystals

Tables Icon

Table 8 Incident Energy at LCP Positions

Tables Icon

Table 9 Improved Type-I Water Specifications for LCP Cleaning

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ = λ 0 = n ¯ P ,
t = δ λ 2 π Δ n .
Δ λ FWHM = Δ n n ¯ λ 0 .
λ = λ 0 [ sin 1 ( 1 n ¯ sin θ ) ] .
I ( r ) = I 0 exp [ ( r / r 0 ) N ] , N = 5 10 ,
I ( r ) = I 0 e Q t ( r ) ,
t ( micrometers ) = [ ( r 2 r 0 2 ) / 4 f ( n 1 ) × 10 3 ] ( r r 0 ) ,

Metrics