Abstract

We have observed a variety of internal beam configurations in photorefractive BaTiO3 pumped by a cw Ar+ laser at 514.5 nm. Among these configurations was a total-internal-reflection ring resonator contained entirely within the crystal, with light circulating unidirectionally in the plane of the beam fanning. Phase-conjugate responses were in general found to depend critically on system parameters, in particular, on the separation between the pump focusing lens and the crystal. During the pulsation mode of the phase-conjugate reflection, a sudden frequency shift of 5–10 Hz was observed to occur during the pulse’s trailing edge. Certain internal beam patterns were found to be frozen into the crystal and were nearly invariant to small lateral motions of the pump beam across the crystal. Phase-conjugate returns, which would appear to the naked eye to be cw, were often found to possess nearly periodic fluctuations in amplitude and in center frequency.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
    [CrossRef]
  2. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read–write applications,” Appl. Opt. 13, 788–794 (1974).
    [CrossRef] [PubMed]
  3. R. L. Townsend and J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970).
    [CrossRef]
  4. D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
    [CrossRef]
  5. M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
    [CrossRef]
  6. J. B. Thaxter, “Electrical control of holographic storage in strontium-barium niobate,” Appl. Phys. Lett. 15, 210–212 (1969).
    [CrossRef]
  7. F. Micheron, C. Mayeux, and J. C. Trotier, “Electrical control of photoferroelectric materials for optical storage,” Appl. Opt. 13, 784–787 (1974).
    [CrossRef] [PubMed]
  8. A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
    [CrossRef]
  9. D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
    [CrossRef]
  10. P. Gunter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
    [CrossRef]
  11. J. Feinberg, “Optical phase conjugation in photorefractive materials,” in Optical Phase Conjugation, R. A. Fisher, ed.(Academic, New York, 1983), pp. 417–443;M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and application of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
    [CrossRef]
  12. J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
    [CrossRef]
  13. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980);erratum, Opt. Lett. 6, 257 (1981).
    [CrossRef] [PubMed]
  14. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
    [CrossRef]
  15. J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
    [CrossRef]
  16. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef] [PubMed]
  17. K. R. MacDonald and J. Feinberg, “Theory of a self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983).
    [CrossRef]
  18. F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362–364 (1984).
    [CrossRef] [PubMed]
  19. R. A. McFarlane and D. G. Steel, “Laser oscillator using resonator with self-pumped phase-conjugate mirror,” Opt. Lett. 8, 208–210 (1983).
    [CrossRef] [PubMed]
  20. J. Feinberg, “Interferometer with a self-pumped phase-conjugating mirror,” Opt. Lett. 8, 569–571 (1983).
    [CrossRef] [PubMed]
  21. J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420–422 (1984).
    [CrossRef] [PubMed]
  22. W. B. Whitten and J. M. Ramsey, “Self-scanning of a dye laser due to feedback from a BaTiO3 phase-conjugate reflector,” Opt. Lett. 9, 44–46 (1984).
    [CrossRef] [PubMed]
  23. M. Cronin-Golomb, S. Kwong, and A. Yariv, “Multicolor passive (self-pumped) phase conjugation,” Appl. Phys. Lett. 44, 727–729 (1984).
    [CrossRef]
  24. G. C. Valley and G. J. Dunning, “Observation of optical chaos in a phase-conjugate resonator,” Opt. Lett. 9, 513–515 (1984).
    [CrossRef] [PubMed]
  25. K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985).
    [CrossRef] [PubMed]
  26. M. Cronin-Golomb and K. Y. Lau, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09 μm Ar+ lasers,” Appl. Phys. Lett. 47, 567–569 (1985).
    [CrossRef]
  27. D. Z. Anderson, “Coherent optical eigenstate memory,” Opt. Lett. 11, 56–58 (1986).
    [CrossRef] [PubMed]
  28. B. H. Soffer, G. J. Dunning, Y. Owchenko, and E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).
    [CrossRef] [PubMed]
  29. Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
    [CrossRef]
  30. J. Feinberg and G. D. Bacher, “Phase-locking lasers with phase conjugation,” Appl. Phys. Lett. 48, 570–572 (1986).
    [CrossRef]
  31. J. F. Lam, “Origin of phase conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909–911 (1985);G. C. Valley, “Competition between forward and backward photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987).
    [CrossRef]
  32. M. D. Ewbank, P. Yeh, and M. Khoshnevsian, “Time reversal by an interferometer with coupled phase-conjugate reflectors,” Opt. Lett. 10, 282–284 (1985).
    [CrossRef] [PubMed]
  33. T. Y. Chang and R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408–410 (1985).
    [CrossRef] [PubMed]
  34. M. Cronin-Golomb and D. Z. Anderson, “Canceling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror,” Appl. Phys. Lett. 47, 346–348 (1985).
    [CrossRef]
  35. P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
    [CrossRef]
  36. P. Narum, D. J. Gauthier, and R. W. Boyd, “Instabilities in a self-pumped barium titanate phase conjugate mirror,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986);A. M. C. Smout, R. W. Eason, and M. C. Gower, “Regular oscillations and self-pulsations in self-pumped BaTiO3,” Opt. Commun. 59, 77 (1986).
    [CrossRef]
  37. A. Yariv and S. Kwong, “Theory of laser oscillation in resonators with photorefractive gain,” Opt. Lett. 10, 454–456 (1985).
    [CrossRef] [PubMed]
  38. S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
    [CrossRef]
  39. M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
    [CrossRef]
  40. V. M. Serdyuk and A. P. Khapalyuk, “Diffraction of light by phase holograms in photorefractive ferroelectric crystals,” Sov. J. Quantum Electron. 16, 91–98 (1986).
    [CrossRef]
  41. S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650°C,” J. Opt. Soc. Am. B 3, 283–292 (1986).
    [CrossRef]
  42. M. B. Klein and R. N. Schwartz, “Photorefractive effect in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305 (1986).
    [CrossRef]
  43. D. A. Temple and C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 2, 337–341 (1986).
    [CrossRef]
  44. S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
    [CrossRef] [PubMed]
  45. A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
    [CrossRef]
  46. M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
    [CrossRef]
  47. B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
    [CrossRef]
  48. M. C. Gower, “Photo-induced voltages and frequency shifts in a self-pumped phase-conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
    [CrossRef] [PubMed]
  49. A. E. Chiou and P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
    [CrossRef] [PubMed]
  50. M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
    [CrossRef] [PubMed]
  51. M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, and T. R. O’Meara, “Imaging threshold detector using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
    [CrossRef] [PubMed]
  52. F. S. Chen, “Optically induced change of refractive indices in LiNbO3and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
    [CrossRef]
  53. A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
    [CrossRef]
  54. It was recently reported by D. M. Pepper [“Observation of diminished specular reflectivity in self-pumped photorefractive conjugators,” J. Opt. Soc. Am. A 3(13), P32 (1986)] that specular reflectivity off the self-pumped conjugator’s entrance face can be significantly less than that predicted from the Fresnel formula.

1986 (17)

D. Z. Anderson, “Coherent optical eigenstate memory,” Opt. Lett. 11, 56–58 (1986).
[CrossRef] [PubMed]

B. H. Soffer, G. J. Dunning, Y. Owchenko, and E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).
[CrossRef] [PubMed]

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

J. Feinberg and G. D. Bacher, “Phase-locking lasers with phase conjugation,” Appl. Phys. Lett. 48, 570–572 (1986).
[CrossRef]

V. M. Serdyuk and A. P. Khapalyuk, “Diffraction of light by phase holograms in photorefractive ferroelectric crystals,” Sov. J. Quantum Electron. 16, 91–98 (1986).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650°C,” J. Opt. Soc. Am. B 3, 283–292 (1986).
[CrossRef]

M. B. Klein and R. N. Schwartz, “Photorefractive effect in BaTiO3: microscopic origins,” J. Opt. Soc. Am. B 3, 293–305 (1986).
[CrossRef]

D. A. Temple and C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 2, 337–341 (1986).
[CrossRef]

S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
[CrossRef] [PubMed]

A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
[CrossRef]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
[CrossRef]

M. C. Gower, “Photo-induced voltages and frequency shifts in a self-pumped phase-conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
[CrossRef] [PubMed]

A. E. Chiou and P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
[CrossRef] [PubMed]

M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, and T. R. O’Meara, “Imaging threshold detector using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
[CrossRef] [PubMed]

It was recently reported by D. M. Pepper [“Observation of diminished specular reflectivity in self-pumped photorefractive conjugators,” J. Opt. Soc. Am. A 3(13), P32 (1986)] that specular reflectivity off the self-pumped conjugator’s entrance face can be significantly less than that predicted from the Fresnel formula.

1985 (10)

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb and K. Y. Lau, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09 μm Ar+ lasers,” Appl. Phys. Lett. 47, 567–569 (1985).
[CrossRef]

J. F. Lam, “Origin of phase conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909–911 (1985);G. C. Valley, “Competition between forward and backward photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987).
[CrossRef]

M. D. Ewbank, P. Yeh, and M. Khoshnevsian, “Time reversal by an interferometer with coupled phase-conjugate reflectors,” Opt. Lett. 10, 282–284 (1985).
[CrossRef] [PubMed]

T. Y. Chang and R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408–410 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb and D. Z. Anderson, “Canceling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror,” Appl. Phys. Lett. 47, 346–348 (1985).
[CrossRef]

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

A. Yariv and S. Kwong, “Theory of laser oscillation in resonators with photorefractive gain,” Opt. Lett. 10, 454–456 (1985).
[CrossRef] [PubMed]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
[CrossRef]

1984 (6)

1983 (3)

1982 (4)

P. Gunter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
[CrossRef] [PubMed]

1980 (2)

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980);erratum, Opt. Lett. 6, 257 (1981).
[CrossRef] [PubMed]

1978 (1)

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

1977 (1)

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

1975 (1)

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

1974 (2)

1972 (1)

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

1970 (1)

R. L. Townsend and J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970).
[CrossRef]

1969 (2)

J. B. Thaxter, “Electrical control of holographic storage in strontium-barium niobate,” Appl. Phys. Lett. 15, 210–212 (1969).
[CrossRef]

F. S. Chen, “Optically induced change of refractive indices in LiNbO3and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[CrossRef]

1968 (1)

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Albers, J.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Amodei, J. J.

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Anderson, D. Z.

D. Z. Anderson, “Coherent optical eigenstate memory,” Opt. Lett. 11, 56–58 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb and D. Z. Anderson, “Canceling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror,” Appl. Phys. Lett. 47, 346–348 (1985).
[CrossRef]

Bacher, G. D.

Ballman, A. A.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Boyd, R. W.

P. Narum, D. J. Gauthier, and R. W. Boyd, “Instabilities in a self-pumped barium titanate phase conjugate mirror,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986);A. M. C. Smout, R. W. Eason, and M. C. Gower, “Regular oscillations and self-pulsations in self-pumped BaTiO3,” Opt. Commun. 59, 77 (1986).
[CrossRef]

Chang, T. Y.

Chen, F. S.

F. S. Chen, “Optically induced change of refractive indices in LiNbO3and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[CrossRef]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Chiou, A. E.

Cronin-Golomb, M.

M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
[CrossRef]

M. Cronin-Golomb and D. Z. Anderson, “Canceling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror,” Appl. Phys. Lett. 47, 346–348 (1985).
[CrossRef]

M. Cronin-Golomb and K. Y. Lau, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09 μm Ar+ lasers,” Appl. Phys. Lett. 47, 567–569 (1985).
[CrossRef]

M. Cronin-Golomb, S. Kwong, and A. Yariv, “Multicolor passive (self-pumped) phase conjugation,” Appl. Phys. Lett. 44, 727–729 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Ducharme, S.

Dunning, G. J.

Ewbank, M. D.

Fainman, Y.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Feinberg, J.

J. Feinberg and G. D. Bacher, “Phase-locking lasers with phase conjugation,” Appl. Phys. Lett. 48, 570–572 (1986).
[CrossRef]

S. Ducharme and J. Feinberg, “Altering the photorefractive properties of BaTiO3 by reduction and oxidation at 650°C,” J. Opt. Soc. Am. B 3, 283–292 (1986).
[CrossRef]

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985).
[CrossRef] [PubMed]

F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362–364 (1984).
[CrossRef] [PubMed]

J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420–422 (1984).
[CrossRef] [PubMed]

J. Feinberg, “Interferometer with a self-pumped phase-conjugating mirror,” Opt. Lett. 8, 569–571 (1983).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, “Theory of a self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983).
[CrossRef]

J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46–51 (1982).
[CrossRef]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
[CrossRef] [PubMed]

J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980);erratum, Opt. Lett. 6, 257 (1981).
[CrossRef] [PubMed]

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

J. Feinberg, “Optical phase conjugation in photorefractive materials,” in Optical Phase Conjugation, R. A. Fisher, ed.(Academic, New York, 1983), pp. 417–443;M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and application of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Fischer, B.

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
[CrossRef]

S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
[CrossRef] [PubMed]

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Gauthier, D. J.

P. Narum, D. J. Gauthier, and R. W. Boyd, “Instabilities in a self-pumped barium titanate phase conjugate mirror,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986);A. M. C. Smout, R. W. Eason, and M. C. Gower, “Regular oscillations and self-pulsations in self-pumped BaTiO3,” Opt. Commun. 59, 77 (1986).
[CrossRef]

Glass, A. M.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Gower, M. C.

Gunter, P.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

P. Gunter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Hellwarth, R. W.

Jahoda, F. C.

Johnson, A. M.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Khapalyuk, A. P.

V. M. Serdyuk and A. P. Khapalyuk, “Diffraction of light by phase holograms in photorefractive ferroelectric crystals,” Sov. J. Quantum Electron. 16, 91–98 (1986).
[CrossRef]

Khoshnevsian, M.

Klancnik, E.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Klein, M. B.

Kwong, S.

A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
[CrossRef]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

A. Yariv and S. Kwong, “Theory of laser oscillation in resonators with photorefractive gain,” Opt. Lett. 10, 454–456 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb, S. Kwong, and A. Yariv, “Multicolor passive (self-pumped) phase conjugation,” Appl. Phys. Lett. 44, 727–729 (1984).
[CrossRef]

Kyuma, K.

A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
[CrossRef]

Lam, J. F.

J. F. Lam, “Origin of phase conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909–911 (1985);G. C. Valley, “Competition between forward and backward photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987).
[CrossRef]

LaMacchia, J. T.

R. L. Townsend and J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970).
[CrossRef]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

Lau, K. Y.

M. Cronin-Golomb and K. Y. Lau, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09 μm Ar+ lasers,” Appl. Phys. Lett. 47, 567–569 (1985).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Lind, R. C.

MacDonald, K. R.

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985).
[CrossRef] [PubMed]

K. R. MacDonald and J. Feinberg, “Theory of a self-pumped phase conjugator with two coupled interaction regions,” J. Opt. Soc. Am. 73, 548–553 (1983).
[CrossRef]

Marom, E.

Mayeux, C.

McFarlane, R. A.

Micheron, F.

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

F. Micheron, C. Mayeux, and J. C. Trotier, “Electrical control of photoferroelectric materials for optical storage,” Appl. Opt. 13, 784–787 (1974).
[CrossRef] [PubMed]

Narum, P.

P. Narum, D. J. Gauthier, and R. W. Boyd, “Instabilities in a self-pumped barium titanate phase conjugate mirror,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986);A. M. C. Smout, R. W. Eason, and M. C. Gower, “Regular oscillations and self-pulsations in self-pumped BaTiO3,” Opt. Commun. 59, 77 (1986).
[CrossRef]

O’Meara, T. R.

Olson, D. H.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Owchenko, Y.

Paslaski, J.

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
[CrossRef]

Peltier, M.

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

Pepper, D. M.

It was recently reported by D. M. Pepper [“Observation of diminished specular reflectivity in self-pumped photorefractive conjugators,” J. Opt. Soc. Am. A 3(13), P32 (1986)] that specular reflectivity off the self-pumped conjugator’s entrance face can be significantly less than that predicted from the Fresnel formula.

Phillips, W.

Ramsey, J. M.

Rodgers, K. F.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Schwartz, R. N.

Serdyuk, V. M.

V. M. Serdyuk and A. P. Khapalyuk, “Diffraction of light by phase holograms in photorefractive ferroelectric crystals,” Sov. J. Quantum Electron. 16, 91–98 (1986).
[CrossRef]

Simpson, W.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

Soffer, B. H.

Staebler, D. L.

D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read–write applications,” Appl. Opt. 13, 788–794 (1974).
[CrossRef] [PubMed]

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

Steel, D. G.

Sternklar, S.

S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
[CrossRef] [PubMed]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
[CrossRef]

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

Temple, D. A.

D. A. Temple and C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 2, 337–341 (1986).
[CrossRef]

Thaxter, J. B.

J. B. Thaxter, “Electrical control of holographic storage in strontium-barium niobate,” Appl. Phys. Lett. 15, 210–212 (1969).
[CrossRef]

Townsend, R. L.

R. L. Townsend and J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970).
[CrossRef]

Trotier, J. C.

Ury, I.

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

Valley, G. C.

Voit, E.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

Warde, C.

D. A. Temple and C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 2, 337–341 (1986).
[CrossRef]

Weber, P. G.

Weiss, S.

S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
[CrossRef] [PubMed]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
[CrossRef]

White, J. O.

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Whitten, W. B.

Yariv, A.

M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
[CrossRef]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
[CrossRef]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

A. Yariv and S. Kwong, “Theory of laser oscillation in resonators with photorefractive gain,” Opt. Lett. 10, 454–456 (1985).
[CrossRef] [PubMed]

M. Cronin-Golomb, S. Kwong, and A. Yariv, “Multicolor passive (self-pumped) phase conjugation,” Appl. Phys. Lett. 44, 727–729 (1984).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

Yeh, P.

Zha, M. Z.

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (15)

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, and A. A. Ballman, “Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect,” Appl. Phys. Lett. 44, 948–950 (1984).
[CrossRef]

D. von der Linde, A. M. Glass, and K. F. Rodgers, “High-sensitivity optical recording in KTN by two-photon absorption,” Appl. Phys. Lett. 26, 22–24 (1975).
[CrossRef]

F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–224 (1968).
[CrossRef]

J. B. Thaxter, “Electrical control of holographic storage in strontium-barium niobate,” Appl. Phys. Lett. 15, 210–212 (1969).
[CrossRef]

J. O. White, M. Cronin-Golomb, B. Fischer, and A. Yariv, “Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3,” Appl. Phys. Lett. 40, 450–452 (1982).
[CrossRef]

M. Cronin-Golomb, S. Kwong, and A. Yariv, “Multicolor passive (self-pumped) phase conjugation,” Appl. Phys. Lett. 44, 727–729 (1984).
[CrossRef]

M. Cronin-Golomb and K. Y. Lau, “Infrared photorefractive passive phase conjugation with BaTiO3: demonstrations with GaAlAs and 1.09 μm Ar+ lasers,” Appl. Phys. Lett. 47, 567–569 (1985).
[CrossRef]

J. Feinberg and G. D. Bacher, “Phase-locking lasers with phase conjugation,” Appl. Phys. Lett. 48, 570–572 (1986).
[CrossRef]

J. F. Lam, “Origin of phase conjugate waves in self-pumped photorefractive mirrors,” Appl. Phys. Lett. 46, 909–911 (1985);G. C. Valley, “Competition between forward and backward photorefractive scattering in BaTiO3,” J. Opt. Soc. Am. B 4, 14–19 (1987).
[CrossRef]

M. Cronin-Golomb and D. Z. Anderson, “Canceling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror,” Appl. Phys. Lett. 47, 346–348 (1985).
[CrossRef]

S. Kwong, A. Yariv, M. Cronin-Golomb, and I. Ury, “Conversion of optical path length to frequency by an interferometer using photorefractive oscillation,” Appl. Phys. Lett. 47, 460–462 (1985).
[CrossRef]

M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugators,” Appl. Phys. Lett. 47, 1131–1133 (1985).
[CrossRef]

A. Yariv, S. Kwong, and K. Kyuma, “Demonstration of an all-optical associative holographic memory,” Appl. Phys. Lett. 48, 1114–1116 (1986).
[CrossRef]

M. Cronin-Golomb, A. Yariv, and I. Ury, “Coherent coupling of diode lasers by phase conjugation,” Appl. Phys. Lett. 48, 1240–1242 (1986).
[CrossRef]

B. Fischer, S. Sternklar, and S. Weiss, “Photorefractive oscillation with intracavity image and multimode fiber,” Appl. Phys. Lett. 48, 1567–1569 (1986).
[CrossRef]

J. Appl. Phys. (5)

F. S. Chen, “Optically induced change of refractive indices in LiNbO3and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
[CrossRef]

J. Feinberg, D. Heiman, A. R. Tanguay, and R. W. Hellwarth, “Photo-refractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297–1305 (1980).
[CrossRef]

M. Peltier and F. Micheron, “Volume hologram recording and charge transfer process in Bi12SiO20 and Bi12GeO20,” J. Appl. Phys. 48, 3683–3690 (1977).
[CrossRef]

R. L. Townsend and J. T. LaMacchia, “Optically induced refractive index changes in BaTiO3,” J. Appl. Phys. 41, 5188–5192 (1970).
[CrossRef]

D. L. Staebler and J. J. Amodei, “Coupled-wave analysis of holographic storage in LiNbO3,” J. Appl. Phys. 43, 1042–1049 (1972).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

It was recently reported by D. M. Pepper [“Observation of diminished specular reflectivity in self-pumped photorefractive conjugators,” J. Opt. Soc. Am. A 3(13), P32 (1986)] that specular reflectivity off the self-pumped conjugator’s entrance face can be significantly less than that predicted from the Fresnel formula.

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

P. Gunter, E. Voit, M. Z. Zha, and J. Albers, “Self-pulsation and optical chaos in self-pumped photorefractive BaTiO3,” Opt. Commun. 55, 210–214 (1985).
[CrossRef]

Opt. Eng. (2)

Y. Fainman, E. Klancnik, and S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

A. M. Glass, “The photorefractive effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

Opt. Lett. (18)

A. Yariv and S. Kwong, “Theory of laser oscillation in resonators with photorefractive gain,” Opt. Lett. 10, 454–456 (1985).
[CrossRef] [PubMed]

S. Sternklar, S. Weiss, and B. Fischer, “Tunable frequency shift of photorefractive oscillators,” Opt. Lett. 11, 165–167 (1986).
[CrossRef] [PubMed]

M. C. Gower, “Photo-induced voltages and frequency shifts in a self-pumped phase-conjugating BaTiO3 crystal,” Opt. Lett. 11, 458–460 (1986).
[CrossRef] [PubMed]

A. E. Chiou and P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
[CrossRef] [PubMed]

M. Cronin-Golomb and A. Yariv, “Self-induced frequency scanning and distributed Bragg reflection in semiconductor lasers with phase-conjugate feedback,” Opt. Lett. 11, 455–457 (1986).
[CrossRef] [PubMed]

M. B. Klein, G. J. Dunning, G. C. Valley, R. C. Lind, and T. R. O’Meara, “Imaging threshold detector using a phase-conjugate resonator in BaTiO3,” Opt. Lett. 11, 575–577 (1986).
[CrossRef] [PubMed]

D. Z. Anderson, “Coherent optical eigenstate memory,” Opt. Lett. 11, 56–58 (1986).
[CrossRef] [PubMed]

B. H. Soffer, G. J. Dunning, Y. Owchenko, and E. Marom, “Associative holographic memory with feedback using phase-conjugate mirrors,” Opt. Lett. 11, 118–120 (1986).
[CrossRef] [PubMed]

G. C. Valley and G. J. Dunning, “Observation of optical chaos in a phase-conjugate resonator,” Opt. Lett. 9, 513–515 (1984).
[CrossRef] [PubMed]

J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
[CrossRef] [PubMed]

M. D. Ewbank, P. Yeh, and M. Khoshnevsian, “Time reversal by an interferometer with coupled phase-conjugate reflectors,” Opt. Lett. 10, 282–284 (1985).
[CrossRef] [PubMed]

T. Y. Chang and R. W. Hellwarth, “Optical phase conjugation by backscattering in barium titanate,” Opt. Lett. 10, 408–410 (1985).
[CrossRef] [PubMed]

F. C. Jahoda, P. G. Weber, and J. Feinberg, “Optical feedback, wavelength response, and interference effects of self-pumped phase conjugation in BaTiO3,” Opt. Lett. 9, 362–364 (1984).
[CrossRef] [PubMed]

R. A. McFarlane and D. G. Steel, “Laser oscillator using resonator with self-pumped phase-conjugate mirror,” Opt. Lett. 8, 208–210 (1983).
[CrossRef] [PubMed]

J. Feinberg, “Interferometer with a self-pumped phase-conjugating mirror,” Opt. Lett. 8, 569–571 (1983).
[CrossRef] [PubMed]

J. Feinberg and G. D. Bacher, “Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity,” Opt. Lett. 9, 420–422 (1984).
[CrossRef] [PubMed]

W. B. Whitten and J. M. Ramsey, “Self-scanning of a dye laser due to feedback from a BaTiO3 phase-conjugate reflector,” Opt. Lett. 9, 44–46 (1984).
[CrossRef] [PubMed]

J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519–521 (1980);erratum, Opt. Lett. 6, 257 (1981).
[CrossRef] [PubMed]

Phys. Rep. (1)

P. Gunter, “Holography, coherent light amplification, and optical phase conjugation with photorefractive materials,” Phys. Rep. 93, 199–299 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

K. R. MacDonald and J. Feinberg, “Enhanced four-wave mixing by use of frequency-shifted optical waves in photorefractive BaTiO3,” Phys. Rev. Lett. 55, 821–824 (1985).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. M. Serdyuk and A. P. Khapalyuk, “Diffraction of light by phase holograms in photorefractive ferroelectric crystals,” Sov. J. Quantum Electron. 16, 91–98 (1986).
[CrossRef]

Other (2)

P. Narum, D. J. Gauthier, and R. W. Boyd, “Instabilities in a self-pumped barium titanate phase conjugate mirror,” in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986);A. M. C. Smout, R. W. Eason, and M. C. Gower, “Regular oscillations and self-pulsations in self-pumped BaTiO3,” Opt. Commun. 59, 77 (1986).
[CrossRef]

J. Feinberg, “Optical phase conjugation in photorefractive materials,” in Optical Phase Conjugation, R. A. Fisher, ed.(Academic, New York, 1983), pp. 417–443;M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, “Theory and application of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. QE-20, 12–30 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

(a) The self-pumped phase conjugator using internal reflection. This is also known as the cat conjugator, after Feinberg.16 The pump beam entered from the top, perpendicular to the figure border, as indicated by the thick arrow. The thin arrow indicates the direction of the crystal’s c axis, (b) The effect on the cat conjugator of placing a knife edge into the incident beam. The beam–crystal configuration was that of (a). The knife edge obscured 50% of the beam on its right side.

Fig. 2
Fig. 2

The effect of translating the pump beam a small distance across the barium titanate crystal face, (a) A focused Gaussian beam at ϕ = 45° producing R = 12%. (b) Translating the crystal to the left across the pump beam reduced R to 8% and produced an entirely different internal beam pattern.

Fig. 3
Fig. 3

Dependence of the auxiliary beam pattern on the pump beam’s angle of incidence (ϕ). (a) The focused Gaussian beam at ϕ = 55° produced R = 48%. (b) A decrease of 3° in ϕ reduced R to 37% and produced a more complex beam-fanning pattern.

Fig. 4
Fig. 4

Sensitivity of the barium titanate phase-conjugate reflectivity on lens-to-crystal separation. Large phase-conjugate fluctuations occurred in the indicated zones, whereas stable signals occurred elsewhere. The vertical limits of the observed fluctuations are shown by the dashed lines. Note that moving the lens from 29.7 to 30.0 cm (a 1% change) caused a 20-fold increase in the phase-conjugate signal. TIR, total internal reflection.

Fig. 5
Fig. 5

Dependence of the barium titanate auxiliary beam pattern on lens-to-crystal separation: (a) 30.00-cm separation, R = 39%, and the auxiliary beam pattern was steady; (b) 29.60-cm separation, R = 3.3%, and the auxiliary beam pattern was steady; (c) 29.40-cm separation, R fluctuated between 2.0 and 4.7%, and, as explained in the text, light intensity here was rhythmically exchanged between the open parallelogram at top right and beam A at a rate of ∼3 Hz.

Fig. 6
Fig. 6

Photograph of the TIR ring of light within the crystal.

Fig. 7
Fig. 7

Evolution of the TIR ring in barium titanate. (a) The auxiliary beam pattern moments before the TIR ring developed (t = 0:00 sec, R = 44%). (b) A faint elongated rectangular TIR ring spontaneously established itself (t = 0:15 sec, R = 27%). (c) The ring evolved to a sharp outline (t = 0:27 sec, R = 29%). (d) The TIR ring developed a split in its left edge just before vanishing (t = 0:30 sec).

Fig. 8
Fig. 8

Determination of light circulation in the barium titanate TIR ring. A second barium titanate crystal was brought close to the lower left side of the main crystal. The beam leaves from the right, indicating that light in the TIR ring traveled counterclockwise.

Fig. 9
Fig. 9

An example of the diffuse diamond. This pattern was seen only when diffuse fanning occurred. The reflectivity was always zero.

Fig. 10
Fig. 10

An example of the figure-eight auxiliary beam pattern in barium titanate. (a) This figure-eight was quite stable although occasionally the upper half would fade, (b) With the focusing lens brought slightly closer to the crystal, the upper portion of the figure-eight faded in and out every 3 sec while R oscillated between 0 and 23%. The indicated figure corresponds to the off portion of the cycle.

Fig. 11
Fig. 11

An example of the oscillating principal diagonals. These were observed to fade in and out as the reflectivity oscillated between 0 and 26%.

Fig. 12
Fig. 12

This unusual internal beam pattern shows a split in the pump beam and a set of streaks at midcrystal parallel to the c axis. Note the prominent diffuse beam fanning. There was no phase-conjugate signal.

Fig 13
Fig 13

Examples of an oscillating phase-conjugate signal in barium titanate. (a) Oscilloscope trace of the phase-conjugate signal when the signal first appeared. Frequency sweeping was observed, (b) The phase-conjugate signal as it appeared approximately 1 mm later. The oscillations spontaneously alternated between those of (a) and (b) at irregular intervals.

Fig. 14
Fig. 14

A view of the auxiliary beam pattern in barium titanate for the on cycle of Fig. 13(b). When the phase-conjugate signal went to zero, all internal beams vanished except the pump and its reflection off the exit face.

Fig. 15
Fig. 15

Oscillating phase-conjugate signals in barium titanate for low, medium, and high pump intensities: a, 5% of full pump intensity; b, 14% of full pump intensity; c, full pump intensity.

Fig. 16
Fig. 16

Pulse-repetition frequency of the phase-conjugate signal versus pump power for the configuration of Fig. 14.

Fig. 17
Fig. 17

Examples of frequency sweeping during the pulsation mode of phase conjugation in barium titanate. The upper figure shows the profile of the phase-conjugate pulse as a function of time. The lower figure shows the frequency shift relative to the pump beam at the corresponding time (Only the absolute value of the frequency shift was measured. Positive and negative shifts merely indicate a reversal of fringe motion.) a, Note the large frequency shift that coincides with the decay of the pulsation. The pump intensity was half of full value. b, Note the large positive and negative excursions of the frequency shift, which correlate with the decay of the phase-conjugate signal. The pump intensity was one quarter of full value.

Fig. 18
Fig. 18

The effects of intentionally returning the exit beam into the crystal. The return beam can be seen as the broad, dark streak parallel to the sharper pump beam, (a) The auxiliary beam pattern in the absence of a return beam; R = 33% with small fluctuations, (b) Returning the exit beam along the right-hand side of the pump beam erased the auxiliary beam pattern. The phase-conjugate signal was also eliminated. (The white streak near the crystal’s top right edge is an artifact of videocassette recorder playback.) (c) Returning the exit beam along the left side of the pump beam caused no visible changes in the auxiliary beam pattern; R = 23%. (d) The occasional counterexample. Here, returning the exit beam along the right side of the pump beam left the internal beam pattern unchanged; R = 23%.

Fig. 19
Fig. 19

Motional invanance of some auxiliary beams with a small translation of the barium titanate crystal, (a) The standard phase-conjugate pattern similar to that of Fig. 1(a). (b) When the crystal is translated a small amount across the pump beam, the beam pair on the left appeared to move with the crystal. In actuality the pair shifted by only 20% of the crystal motion. Note how the pump beam has cut across the beam pair on the right-hand side of the crystal, indicating that this pair also moved with the crystal.

Fig. 20
Fig. 20

Motional invariance of the TIR ring with a small translation of the barium titanate crystal across the incident beam. The ring was obtained with the pump beam obscured 50% on its right-hand side by a knife edge. (a) The initial auxiliary beam pattern showing the TIR ring (b) When the crystal is translated a small amount to the right across the pump beam, the TIR ring appeared to move with the crystal, detaching itself from the pump beam. In actuality the top apex of the TIR ring shifted about half of the crystal motion.

Tables (3)

Tables Icon

Table 1 Summary of Experimental Parameters for Figs. 120

Tables Icon

Table 2 The Evolution of a Total-Internal-Reflection Ringa

Tables Icon

Table 3 Sensitivity of the Phase-Conjugate Signal and the Internal Beam Pattern to the Separation between the 30-cm Focusing Lens and the BaTiO3 Crystala

Metrics