Abstract

We present a new type of phase-conjugate mirror that is based on an externally driven Fabry–Perot interferometer with intracavity-pumped photorefractive material, which is probed by the signal beam. It is shown theoretically that such a configuration leads to multivalued solutions and possibly to bistability. This configuration also permits optical control of the resonator output and electrical control of the phase-conjugate reflectivity.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
    [CrossRef]
  2. For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
    [CrossRef]
  3. H. M. Gibbs, Optical Bistability (Academic, New York, 1985).
  4. G. P. Agrawal, J. Opt. Soc. Am. 73, 654 (1983).
    [CrossRef]
  5. S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
    [CrossRef]

1986

S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

1985

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

1984

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

1983

Agrawal, G. P.

Connors, L. M.

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Cronin-Golomb, M.

S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Fischer, B.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Foote, P. D.

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Gibbs, H. M.

H. M. Gibbs, Optical Bistability (Academic, New York, 1985).

Hall, T. J.

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Jaura, R.

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Kwong, S. K.

S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

White, J. O.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

Yariv, A.

S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

IEEE J. Quantum Electron.

M. Cronin-Golomb, B. Fischer, J. O. White, A. Yariv, IEEE J. Quantum Electron. QE-20, 12 (1984).
[CrossRef]

S. K. Kwong, M. Cronin-Golomb, A. Yariv, IEEE J. Quantum Electron. QE-22, 1508 (1986).
[CrossRef]

J. Opt. Soc. Am.

Prog. Quantum Electron.

For a review, seeT. J. Hall, R. Jaura, L. M. Connors, P. D. Foote, Prog. Quantum Electron. 10, 77 (1985).
[CrossRef]

Other

H. M. Gibbs, Optical Bistability (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Intracavity pumped PCM. This specific configuration is the one analyzed in the paper.

Fig. 2
Fig. 2

Examples of three other possible configurations of a CC-PCM (in terms of the c axis and probe direction).

Fig. 3
Fig. 3

Log–log plots of the phase-conjugate reflectivity Rpc and the cavity reflectivity R0 as a function of the pump–probe ratio q for the case of an open cavity (r1 = 0).

Fig. 4
Fig. 4

Rpc and R0 as a function of q for the case r1 = 0.9.

Fig. 5
Fig. 5

A plot of the cavity reflectivity R0 as a function of the input parameter q for a high-gain (γl = 10) crystal.

Fig. 6
Fig. 6

Rpc and R0 as a function of q for a detuned resonator: γl = 3, θ = 5°.

Fig. 7
Fig. 7

The dependence of Rpc on the cavity detuning angle θ, for γl = 3 and three values of the pump–probe ratio q.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

d A 1 d z = Γ A 4 , d A 4 * d z = Γ A 1 * , d A 2 * d z = Γ A 3 * , d A 3 d z = Γ A 2 , Γ = γ ( A 1 A 4 * + A 2 * A 3 ) / I T , I T = i = 1 4 I i , I i = | A i | 2 ,
R pc = 4 | c | 2 / ( Q / T + Δ ) 2 ,
Q = ( Δ 2 + 4 | c | 2 ) 1 / 2 , T = tanh ( γ l Q / 2 I T ) , Δ = I 2 ( l ) I 1 ( 0 ) I 4 ( 0 ) ,
[ | c | 2 I 1 ( 0 ) I 2 ( l ) ] ( Q / T + Δ ) 2 + 4 | c | 2 [ I 2 ( l ) + Re ( T ) Q / | T | 2 ] = 0 .
R pc = [ I 1 ( 0 ) I 2 ( l ) | c | 2 ] / [ Q / T + I 2 ( l ) ] ,
| c | 1 , 2 2 = ( { I 1 ( 0 ) [ I 2 ( l ) R pc ] } 1 / 2 ± ( R pc ) 1 / 2 ) 2 .
| E 0 | 2 q = [ I 2 ( l ) + r 1 2 | c | 2 / I 2 ( l ) 2 r 1 | c | cos ( θ + ψ ) ] / ( 1 r 1 2 ) .
I 1 ( 0 ) = r 2 2 I 2 ( 0 ) r 2 2 [ I 2 ( l ) R pc ] .
Δ = r 2 2 R pc + I 2 ( l ) ( 1 r 2 2 ) 1 ,
I T = 1 + I 2 ( l ) ( 1 + r 2 2 ) r 2 2 R pc .
R 0 = 1 [ I 2 ( l ) | c | 2 / I 2 ( l ) ] / q ,
T 0 = ( 1 r 2 2 ) [ I 2 ( l ) R pc ] / q .
γ = γ 0 / ( 1 + i δ τ ) ,
ψ = 0 l Im { γ I 4 ( 1 + f + I 34 + I 34 / f ) [ 2 I 2 ( l ) Δ ] } d z ,
f = 2 [ 2 | c | 2 + ( Q / T + Δ ) I 2 ( l ) ] ( Q / T + Δ ) [ Q / T + 2 I 2 ( l ) Δ ] ,
I 4 = I 2 ( l ) ( 1 I 12 ) Δ 1 I 12 I 34 ,
I 12 = | [ Q / T + 2 I 2 ( l ) Δ ] | 2 | c | 2 | [ 2 | c | 2 + ( Q / T + Δ ) I 2 ( l ) ] | 2 ,
I 34 = 4 | c | 2 / | ( Q / T + Δ ) | 2 .
q = ( I 2 ( l ) + r 1 2 | c | 2 / I 2 ( l ) 2 r 1 | c | cos { ψ [ I 2 ( l ) ] } ) / ( 1 r 1 2 ) .

Metrics