Abstract

We report high-resolution Doppler-free hyperfine-structure determinations of eight excited levels in the first spectrum of zirconium. These structures have been obtained with optogalvanic intermodulated saturation and Polinex spectroscopic techniques on a zirconium vapor formed in a hollow-cathode-type generator. Quantitative values for the hyperfine splittings and for the A and B constants are given for the levels at 16297cm1(F32°), 16787cm1(F51°), 16844cm1(F33°), 17430cm1(D31°), 17556cm1(F34°), 17814cm1(D32°), 18244cm1(D33°) of the configuration 4d25s5pz and of the level at 15 120 cm−1 of the configuration 4d35sa3H6.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Thompson, “High-resolution laser spectroscopy of atomic systems,” Rep. Prog. Phys.48, 531 (1985).
    [Crossref]
  2. J.-M. Gagné, B. Leblanc, B. Mongeau, P. Pianarosa, L. Bertrand, and J.-P. Saint-Dizier, “Production de vapeur d’uranium par pulvérisation cathodique dans une cathode creuse: efficacités relatives des gaz Ne, Ar, Kr et concentration à l’état ⁵L6°,” Appl. Opt. 17, 2507 (1978).
    [Crossref]
  3. J.-M. Gagné, B. Leblanc, B. Mongeau, M. Carleer, and L. Bertrand, “Etude par absorption d’un faisceau laser d’une vapeur d’ 238U (⁵L6°) obtenue à l’aide d’une lampe à cathode creuse,” Appl. Opt. 18, 1084 (1979).
    [Crossref]
  4. J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
    [Crossref]
  5. H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.
  6. O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
    [Crossref]
  7. S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
    [Crossref]
  8. G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr Ides transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
    [Crossref]
  9. G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987).
    [Crossref]
  10. T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
    [Crossref]
  11. J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
    [Crossref]
  12. J.-M. Gagné, M. Giroux, and J.-P. Saint-Dizier, “Refractometer associated with the Fabry–Perot spectrometer,” Appl. Opt. 12, 522 (1973).
    [Crossref]
  13. S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
    [Crossref]
  14. H. Kopfermann, Nuclear Moments (Academic, New York, 1958).
  15. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1981).
    [Crossref]
  16. C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
    [Crossref]
  17. C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

1987 (1)

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987).
[Crossref]

1986 (2)

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr Ides transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

1983 (3)

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

1981 (1)

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

1979 (2)

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

J.-M. Gagné, B. Leblanc, B. Mongeau, M. Carleer, and L. Bertrand, “Etude par absorption d’un faisceau laser d’une vapeur d’ 238U (⁵L6°) obtenue à l’aide d’une lampe à cathode creuse,” Appl. Opt. 18, 1084 (1979).
[Crossref]

1978 (2)

1973 (2)

J.-M. Gagné, M. Giroux, and J.-P. Saint-Dizier, “Refractometer associated with the Fabry–Perot spectrometer,” Appl. Opt. 12, 522 (1973).
[Crossref]

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

Bauche-Arnoult, Cl.

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

Belfrage, C.

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

Bertrand, L.

Bourne, O. L.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.

Büttgenbach, S.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Carleer, M.

Chevalier, G.

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr Ides transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1981).
[Crossref]

Dicke, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Ferguson, A. I.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Gagné, J.-M.

Gebauer, H.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

Giroux, M.

Goldsmith, J. E. M.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Grafström, P.

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

Hackett, P. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.

Hänsen, T. W.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Hopkins, J. B.

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

Humphries, M. R.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Jackson, D. J.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Kopfermann, H.

H. Kopfermann, Nuclear Moments (Academic, New York, 1958).

Kröll, S.

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

Kuhnen, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Langridge-Smith, P. R. R.

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

Lawler, J. E.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Leblanc, B.

Luc, P.

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

Lyons, D. R.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Merle, D.

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

Mitchell, S. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

Mongeau, B.

Morrison, H. D.

H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.

Morse, M. D.

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

Pianarosa, P.

Rayner, D. M.

H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.

Saint-Dizier, J.-P.

Schawlow, A. L.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Siegel, A.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Smalley, R. E.

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

Svanberg, S.

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

Thompson, R. C.

R. C. Thompson, “High-resolution laser spectroscopy of atomic systems,” Rep. Prog. Phys.48, 531 (1985).
[Crossref]

Träber, F.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Wang, Z.-Y.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Yan, G.-Y.

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Appl. Opt. (3)

J. Chem. Phys. (1)

J. B. Hopkins, P. R. R. Langridge-Smith, M. D. Morse, and R. E. Smalley, “Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2,” J. Chem. Phys. 78, 1627 (1983).
[Crossref]

J. Phys. (1)

S. Gerstenkorn, P. Luc, Cl. Bauche-Arnoult, and D. Merle, “Structure hyperfine du niveau fondamental, moments dipolaire et quadrupolaire de l’isotope 235 de l’uranium,” J. Phys. 34, 805 (1973).
[Crossref]

J. Phys. C (1)

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Intermodulated optogalvanic spectroscopy—a comparison with other high resolution tecniques,” J. Phys. C 7, 169 (1983).

Opt. Commun. (4)

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, “A high resolution laser induced fluorescence study of a supersonic zirconium atom beam,” Opt. Commun. 56, 403 (1986).
[Crossref]

G. Chevalier and J.-M. Gagné, “Mesures des déplacements isotopiques du Zr Ides transitions dans le domaine de la rhodamine 6G,” Opt. Commun. 57, 327 (1986).
[Crossref]

G. Chevalier, J.-M. Gagné, and P. Pianarosa, “Isotope shifts in 91Zr from optogalvanic saturation spectroscopy,” Opt. Commun. 64, 127 (1987).
[Crossref]

T. W. Hänsen, D. R. Lyons, A. L. Schawlow, A. Siegel, Z.-Y. Wang, and G.-Y. Yan, “Polarization intermodulated excitation (Polinex) spectroscopy of helium and neon,” Opt. Commun. 38, 47 (1981).
[Crossref]

Phys. Rev. Lett. (1)

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, and A. L. Schawlow, “Doppler-free intermodulated optogalvanic spectroscopy,” Phys. Rev. Lett. 42, 1046 (1979).
[Crossref]

Phys. Scr. (1)

C. Belfrage, P. Grafström, S. Kröll, and S. Svanberg, “Dopplerfree laser spectroscopy measurements on a Ne discharge for determination of 22Ne–20Ne isotope shifts,” Phys. Scr. 27, 367 (1983).
[Crossref]

Z. Phys. A (1)

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, “Hyperfine structure of seven atomic levels of 91Zr and the 91Zr nuclear quadrupole moment,” Z. Phys. A 286, 125 (1978).
[Crossref]

Other (4)

R. C. Thompson, “High-resolution laser spectroscopy of atomic systems,” Rep. Prog. Phys.48, 531 (1985).
[Crossref]

H. Kopfermann, Nuclear Moments (Academic, New York, 1958).

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1981).
[Crossref]

H. D. Morrison, P. A. Hackett, D. M. Rayner, and O. L. Bourne, “Laser separation of zirconium isotopes,” in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 1987), p. 34.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for Polinex and intermodulated saturation spectroscopy. M1–M3, mirrors; BS1–BS3, beam splitters.

Fig. 2
Fig. 2

Diagram of the studied transitions, level positions, and level terms. The upper levels of the nine interconnected transitions belong to the 4d25s5pz configuration; their lower levels, to the 4d25s2a configuration. The transition at λ = 586.950 nm connects the upper 5 d 3 4 p w G 3 5 ° level to the 4d25sa3H6 lower level.

Fig. 3
Fig. 3

Recording of the transition λ = 588.562 nm with Polinex spectroscopy. The HFS peaks are identified by the notation (F1, F2), where F1 and F2 are the total angular momentum values for the hyperfine components of the lower and upper levels, respectively. The figure also shows the Koster reference signal.

Fig. 4
Fig. 4

Recording of the transition at λ = 614.320 nm with intermodulated saturation spectroscopy. Capital and lowercase letters are used to identify the main and satellite peak positions, respectively. The inverted triangles indicate crossover peaks.17 Also shown is the Koster reference signal.

Fig. 5
Fig. 5

Reconstruction of the HFS of the 614.320-nm line obtained from our recording and the fitting procedure.

Fig. 6
Fig. 6

Diagram of the five interconnected transitions used to test our fitting procedure. This figure indicates the splittings of lower and upper levels obtained in this research.

Tables (4)

Tables Icon

Table 1 Theoretical Intensities of the J′ = 3 → J = 3, I = 5/2 Transition HFS Components from Ref. 14

Tables Icon

Table 2 Experimental Values of the HFS Splittingsa

Tables Icon

Table 3 Calculated Values of the A and B Constants

Tables Icon

Table 4 Isotope Shifts for the Even Isotopes of Zirconium for the Ten Transitions Investigated in This Work

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

W α J F = W α J + C 2 A α J + B α J 3 C ( C + 1 ) 4 I ( I + 1 ) J ( J + 1 ) 8 I ( 2 I 1 ) J ( 2 J 1 ) ,
4 d 2 5 s 5 p z F 3 2 °
4 d 2 5 s 5 p z F 5 1 °
4 d 2 5 s 5 p z F 3 3 °
4 d 2 5 s 5 p z D 3 1 °
4 d 2 5 s 5 p z F 3 4 °
4 d 2 5 s 5 p z D 3 2 °
4 d 2 5 s 5 p z D 3 3 °
4 d 2 5 s 5 p z F 3 2 °
4 d 2 5 s 5 p z F 5 1 °
4 d 2 5 s 5 p z F 3 3 °
4 d 2 5 s 5 p z D 3 1 °
4 d 2 5 s 5 p z F 3 4 °
4 d 2 5 s 5 p z D 3 2 °
4 d 2 5 s 5 p z D 3 3 °
4 d 2 5 s 2 a 3 F 2 4 d 2 5 s 5 p z D 3 1 °
4 d 2 5 s 2 a 3 F 3 4 d 2 5 s 5 p z D 3 2 °
4 d 3 5 s a 3 H 6 4 d 3 5 p w G 3 5 °
4 d 2 5 s 2 a 3 F 4 4 d 2 5 s 5 p z D 3 3 °
4 d 2 5 s 2 a 3 F 3 4 d 2 5 s 5 p z F 3 4 °
4 d 2 5 s 2 a 3 F 2 4 d 2 5 s 5 p z F 5 1 °
4 d 2 5 s 2 a 3 F 2 4 d 2 5 s 5 p z F 3 3 °
4 d 2 5 s 2 a 3 F 4 4 d 2 5 s 5 p z F 3 4 °
4 d 2 5 s 2 a 3 F 2 4 d 2 5 s 5 p z F 3 2 °
4 d 2 5 s 2 a 3 F 3 4 d 2 5 s 5 p z F 3 3 °

Metrics