Abstract

The optogalvanic effect in the positive column of a neon discharge has been investigated both experimentally and theoretically. A mechanically chopped dye laser was tuned to several 1si–2pj neon transitions (Paschen notation). Optogalvanic spectra and their dependence on the current (1–5 mA) for the 594.5-nm optogalvanic resonance were analyzed. Furthermore, fluorescence and laser-induced fluorescence from the discharge have been examined. A general model based on the steady-state solution of rate equations has been developed in order to interpret the optogalvanic and fluorescence measurements. Good agreement between optogalvanic measurements and theoretical predictions was obtained, but there is a discrepancy between the theoretical prediction and the observed laser-induced fluorescence, which exposes the limitations of the model.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
    [CrossRef]
  2. For a review see the papers published in J. Phys. C7 (44) (1983).
  3. E. Arimondo, G. Di Vito, K. Ernst, M. Inguscio, Opt. Lett. 9, 530 (1984).
    [CrossRef] [PubMed]
  4. K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
    [CrossRef]
  5. E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
    [CrossRef]
  6. J. E. Lawler, Phys. Rev. A 22, 1025 (1980).
    [CrossRef]
  7. C. Dreze, Y. Demers, J. M. Gagne, J. Opt. Soc. Am. 72, 912 (1982).
    [CrossRef]
  8. E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
    [CrossRef]
  9. R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
    [CrossRef]
  10. N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
    [CrossRef]
  11. A. Von Engel, Ionized Gases (Clarendon, Oxford, 1965).
  12. D. K. Doughty, J. E. Lawler, Phys. Rev. A 28, 773 (1983).
    [CrossRef]
  13. K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
    [CrossRef]
  14. D. M. Kane, J. Appl. Phys. 56, 1267 (1984).
    [CrossRef]
  15. K. Tachibana, A. V. Phelps, Phys. Rev. A 36, 999 (1987).
    [CrossRef] [PubMed]
  16. M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
    [CrossRef] [PubMed]
  17. R. M. Smits, M. Prins, Physica 96C, 262 (1979).
  18. S. N. Salinger, J. E. Rowe, J. Appl. Phys. 39, 4299 (1969).
    [CrossRef]
  19. A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953).
    [CrossRef]
  20. T. Dote, Y. Ichikawa, J. Phys. Soc. Jpn. Lett. 40, 1217 (1976).
    [CrossRef]
  21. C. Brown, Basic Data of Plasma Physics (Wiley, New York, 1959), p. 65.
  22. W. L. Wiese, G. A. Martin, in Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 68, 386 (1980).
  23. T. Holstein, Phys. Rev. 72, 1212 (1947);Phys. Rev. 83, 1159 (1951).
    [CrossRef]
  24. A. V. Phelps, Phys. Rev. 114, 1011 (1959).
    [CrossRef]
  25. A. J. Dixon, M. F. A. Harrison, A. C. H. Smith, in, Abstract of the Eighth International Conference on the Physics of Electronic and Atomic Collisions, B. C. Cobic, M. V. Kurepa, eds.(Institute of Physics, Belgrade, 1973), Vol. 1, p. 405.
  26. N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).
  27. L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929).
    [CrossRef]
  28. A. Corney, Atomic and Laser Spectroscopy (Clarendon, Oxford, 1977).
  29. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).
    [CrossRef]

1987 (1)

K. Tachibana, A. V. Phelps, Phys. Rev. A 36, 999 (1987).
[CrossRef] [PubMed]

1985 (1)

M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
[CrossRef] [PubMed]

1984 (2)

1983 (3)

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

D. K. Doughty, J. E. Lawler, Phys. Rev. A 28, 773 (1983).
[CrossRef]

1982 (2)

R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
[CrossRef]

C. Dreze, Y. Demers, J. M. Gagne, J. Opt. Soc. Am. 72, 912 (1982).
[CrossRef]

1980 (2)

J. E. Lawler, Phys. Rev. A 22, 1025 (1980).
[CrossRef]

W. L. Wiese, G. A. Martin, in Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 68, 386 (1980).

1979 (4)

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

R. M. Smits, M. Prins, Physica 96C, 262 (1979).

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

1978 (2)

K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
[CrossRef]

1976 (1)

T. Dote, Y. Ichikawa, J. Phys. Soc. Jpn. Lett. 40, 1217 (1976).
[CrossRef]

1975 (1)

J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).
[CrossRef]

1969 (1)

S. N. Salinger, J. E. Rowe, J. Appl. Phys. 39, 4299 (1969).
[CrossRef]

1959 (1)

A. V. Phelps, Phys. Rev. 114, 1011 (1959).
[CrossRef]

1953 (1)

A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953).
[CrossRef]

1947 (1)

T. Holstein, Phys. Rev. 72, 1212 (1947);Phys. Rev. 83, 1159 (1951).
[CrossRef]

1929 (1)

L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929).
[CrossRef]

Anderson, L. W.

M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
[CrossRef] [PubMed]

Arimondo, E.

E. Arimondo, G. Di Vito, K. Ernst, M. Inguscio, Opt. Lett. 9, 530 (1984).
[CrossRef] [PubMed]

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Ben Amar, A.

R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
[CrossRef]

Brown, C.

C. Brown, Basic Data of Plasma Physics (Wiley, New York, 1959), p. 65.

Corney, A.

A. Corney, Atomic and Laser Spectroscopy (Clarendon, Oxford, 1977).

Crim, F. F.

K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
[CrossRef]

Demers, Y.

Di Vito, G.

Di Vito, M. G.

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Dixon, A. J.

A. J. Dixon, M. F. A. Harrison, A. C. H. Smith, in, Abstract of the Eighth International Conference on the Physics of Electronic and Atomic Collisions, B. C. Cobic, M. V. Kurepa, eds.(Institute of Physics, Belgrade, 1973), Vol. 1, p. 405.

Dote, T.

T. Dote, Y. Ichikawa, J. Phys. Soc. Jpn. Lett. 40, 1217 (1976).
[CrossRef]

Doughty, D. K.

D. K. Doughty, J. E. Lawler, Phys. Rev. A 28, 773 (1983).
[CrossRef]

Dreze, C.

Dutton, J.

J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).
[CrossRef]

Engleman, R.

E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

Erez, G.

R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
[CrossRef]

Ernst, K.

E. Arimondo, G. Di Vito, K. Ernst, M. Inguscio, Opt. Lett. 9, 530 (1984).
[CrossRef] [PubMed]

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Ferguson, A. I.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Gagne, J. M.

Goldsmith, J. E. M.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Harrison, M. F. A.

A. J. Dixon, M. F. A. Harrison, A. C. H. Smith, in, Abstract of the Eighth International Conference on the Physics of Electronic and Atomic Collisions, B. C. Cobic, M. V. Kurepa, eds.(Institute of Physics, Belgrade, 1973), Vol. 1, p. 405.

Hirose, C.

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

Holstein, T.

T. Holstein, Phys. Rev. 72, 1212 (1947);Phys. Rev. 83, 1159 (1951).
[CrossRef]

Ichikawa, Y.

T. Dote, Y. Ichikawa, J. Phys. Soc. Jpn. Lett. 40, 1217 (1976).
[CrossRef]

Inguscio, M.

E. Arimondo, G. Di Vito, K. Ernst, M. Inguscio, Opt. Lett. 9, 530 (1984).
[CrossRef] [PubMed]

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Jackson, D. J.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Kane, D. M.

D. M. Kane, J. Appl. Phys. 56, 1267 (1984).
[CrossRef]

Keller, R. A.

E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
[CrossRef]

Langmuir, I.

L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929).
[CrossRef]

Lawler, J. E.

D. K. Doughty, J. E. Lawler, Phys. Rev. A 28, 773 (1983).
[CrossRef]

J. E. Lawler, Phys. Rev. A 22, 1025 (1980).
[CrossRef]

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Lin, Chun C.

M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
[CrossRef] [PubMed]

Maeda, S.

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

Martin, G. A.

W. L. Wiese, G. A. Martin, in Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 68, 386 (1980).

Molnar, J. P.

A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953).
[CrossRef]

Nakajima, T.

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

Phelps, A. V.

K. Tachibana, A. V. Phelps, Phys. Rev. A 36, 999 (1987).
[CrossRef] [PubMed]

A. V. Phelps, Phys. Rev. 114, 1011 (1959).
[CrossRef]

A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953).
[CrossRef]

Phillips, M. H.

M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
[CrossRef] [PubMed]

Prins, M.

R. M. Smits, M. Prins, Physica 96C, 262 (1979).

Rowe, J. E.

S. N. Salinger, J. E. Rowe, J. Appl. Phys. 39, 4299 (1969).
[CrossRef]

Salinger, S. N.

S. N. Salinger, J. E. Rowe, J. Appl. Phys. 39, 4299 (1969).
[CrossRef]

Schawlow, A. L.

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Schenck, P. K.

K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Shuker, R.

R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
[CrossRef]

Smith, A. C. H.

A. J. Dixon, M. F. A. Harrison, A. C. H. Smith, in, Abstract of the Eighth International Conference on the Physics of Electronic and Atomic Collisions, B. C. Cobic, M. V. Kurepa, eds.(Institute of Physics, Belgrade, 1973), Vol. 1, p. 405.

Smith, K. C.

K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
[CrossRef]

Smits, R. M.

R. M. Smits, M. Prins, Physica 96C, 262 (1979).

Smyth, K. C.

K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Steenhuijsen, L. W. G.

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

Tachibana, K.

K. Tachibana, A. V. Phelps, Phys. Rev. A 36, 999 (1987).
[CrossRef] [PubMed]

Tonks, L.

L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929).
[CrossRef]

Uchimoti, N.

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

Van Bommel, P. J. M.

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

Van Schaik, N.

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

Verspaget, F. H. P.

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

Von Engel, A.

A. Von Engel, Ionized Gases (Clarendon, Oxford, 1965).

Wiese, W. L.

W. L. Wiese, G. A. Martin, in Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 68, 386 (1980).

Zalenski, E. F.

E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

Chem. Phys. Lett. (2)

K. C. Smith, R. A. Keller, F. F. Crim, Chem. Phys. Lett. 55, 473 (1978).
[CrossRef]

K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

J. Appl. Phys. (2)

D. M. Kane, J. Appl. Phys. 56, 1267 (1984).
[CrossRef]

S. N. Salinger, J. E. Rowe, J. Appl. Phys. 39, 4299 (1969).
[CrossRef]

J. Chem. Phys. (1)

E. F. Zalenski, R. A. Keller, R. Engleman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. C (2)

N. Van Schaik, L. W. G. Steenhuijsen, P. J. M. Van Bommel, F. H. P. Verspaget, J. Phys. C 7, 97 (1979).

E. Arimondo, M. G. Di Vito, K. Ernst, M. Inguscio, J. Phys. C 7, 267 (1983);K. C. Smyth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).
[CrossRef]

J. Phys. Soc. Jpn. Lett. (1)

T. Dote, Y. Ichikawa, J. Phys. Soc. Jpn. Lett. 40, 1217 (1976).
[CrossRef]

Opt. Commun. (2)

R. Shuker, A. Ben Amar, G. Erez, Opt. Commun. 42, 29 (1982).
[CrossRef]

N. Uchimoti, T. Nakajima, S. Maeda, C. Hirose, Opt. Commun. 44, 154 (1983).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (4)

L. Tonks, I. Langmuir, Phys. Rev. 34, 876 (1929).
[CrossRef]

A. V. Phelps, J. P. Molnar, Phys. Rev. 89, 1202 (1953).
[CrossRef]

T. Holstein, Phys. Rev. 72, 1212 (1947);Phys. Rev. 83, 1159 (1951).
[CrossRef]

A. V. Phelps, Phys. Rev. 114, 1011 (1959).
[CrossRef]

Phys. Rev. A (4)

D. K. Doughty, J. E. Lawler, Phys. Rev. A 28, 773 (1983).
[CrossRef]

K. Tachibana, A. V. Phelps, Phys. Rev. A 36, 999 (1987).
[CrossRef] [PubMed]

M. H. Phillips, L. W. Anderson, Chun C. Lin, Phys. Rev. A 32, 2117 (1985).
[CrossRef] [PubMed]

J. E. Lawler, Phys. Rev. A 22, 1025 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

J. E. Lawler, A. I. Ferguson, J. E. M. Goldsmith, D. J. Jackson, A. L. Schawlow, Phys. Rev. Lett. 42, 1046 (1979).
[CrossRef]

Physica (1)

R. M. Smits, M. Prins, Physica 96C, 262 (1979).

Wavelengths and Transition Probabilities for Atoms and Atomic Ions (1)

W. L. Wiese, G. A. Martin, in Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 68, 386 (1980).

Other (5)

A. J. Dixon, M. F. A. Harrison, A. C. H. Smith, in, Abstract of the Eighth International Conference on the Physics of Electronic and Atomic Collisions, B. C. Cobic, M. V. Kurepa, eds.(Institute of Physics, Belgrade, 1973), Vol. 1, p. 405.

C. Brown, Basic Data of Plasma Physics (Wiley, New York, 1959), p. 65.

A. Von Engel, Ionized Gases (Clarendon, Oxford, 1965).

For a review see the papers published in J. Phys. C7 (44) (1983).

A. Corney, Atomic and Laser Spectroscopy (Clarendon, Oxford, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Neon transitions between 580 and 620 nm observed with three different techniques: (a) the fluorescence spectrum, (b) the OG spectra and (c) the OA spectra. The spectra were recorded at 2.7-Torr neon pressure and 3-mA discharge current. The neon transitions with their assignments are listed in Table 2.

Fig. 2
Fig. 2

Simplified energy-level diagram for neon including the 1S0 ground state, the four levels 1si (i = 2, 3, 4, 5), the ten 2pj levels (j = 1, 2, …,10), and the continuum. The main processes of electron-impact excitation, radiative decay, and collisional mixing are schematically represented.

Fig. 3
Fig. 3

The 1si (i = 3, 4, 5) neon level populations as functions of current at 0.8 Torr, as derived from the numerical solution of the rate equations. The dashed line reports the electron density derived from Eq. (14). Points represent the 1s5-level density obtained from the absorption measurements.

Fig. 4
Fig. 4

Experimental setup: Ch, chopper; A, anode; Ct, cathode; Pt, phototube; Mc, monochromator; CR, chart recorder; L, lens; Rb, ballast resistor; HV, high-voltage power supply; C, capacitive coupler.

Fig. 5
Fig. 5

Comparison between a, experimental and b, theoretical neon fluorescence spectra at 1 mA and 0.8 Torr.

Fig. 6
Fig. 6

Experimental (solid lines) and theoretical (dashed lines) OG spectra at 1 mA and 0.8 Torr. The laser-intensity profile in the analyzed spectral range was taken from measured intensity emission of the dye laser. The power at maximum emission (λ = 580 nm) was limited to ≃ 10 mW to avoid saturation for all the investigated lines. The signal represents the modification (measured in microamperes) of the current flowing through the discharge.

Fig. 7
Fig. 7

Comparison between theoretical (solid line) and experimental data (points) for the OG signal on the 594.5-nm laser line versus the current I at 2.7-Torr pressure and 10-mW laser power.

Fig. 8
Fig. 8

Experimental laser-induced spectra under laser irradiation of a, the 1s5–2p4 transition and b, the 1s4–2p4 transition. The values of current and pressure were 3 mA and 1.8 Torr, respectively. For some lines the upper 2pj level of the LIF transition is indicated. Transitions starting from the pumped upper level have a large intensity, which is out of the scale in the record.

Tables (2)

Tables Icon

Table 1 Values for the Principal Rate Coefficients of Our Discharge Referred to 0.8-Torr Pressure and 1-mA Discharge Current

Tables Icon

Table 2 Wavelengths of the Observed Lines and Their Spectroscopic Assignment (Paschen Notation)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Ne ( S 1 0 ) + e Ne ( 1 s i ) + e ,
Ne ( 1 s i ) + e Ne + + 2 e , i = 2 , 3 , 4 , 5 .
Ne ( 1 s i ) + e Ne ( 2 p j ) + e ,
Ne ( 2 p j ) + e Ne + + 2 e .
w i = ( D 0 / p ) Λ 2 + A p for i = 5 , 3 ,
w 2 = [ τ 2 ] trap 1 = 1.65 × 10 6 sec 1 .
w 4 = [ τ 4 ] trap 1 = { 3.2 × 10 5 sec 1 p = 1 Torr 1.4 × 10 5 sec 1 p = 5 Torr .
d d t S i = + G ( s ) N g n e + j = 1 10 A j i P j + N g j = 2 j i 5 K j i ( s ) S j N g s i j = 2 j i 5 K i j ( s ) [ s ( p ) + s i ( c ) ] S i n e T S i j = 2 5 S j w i S i σ F L ( S m g m g n P n ) δ ( i = m ) , i = 2 , 3 , 4 , 5 ,
Ne 2 + + e Ne ( 2 p j ) + Ne ( 1 S 0 ) .
α r = 2.5 × 10 4 ( T e ) 1 / 2 [ 1 exp ( 900 / T g ) ] ,
d d t P j = + n e i = 2 5 s ( p ) S i + α r 10 n e 2 G ( p ) N g n e + N g l = 1 l j 10 K l j ( p ) P l + σ F L ( S m g m g n P n ) δ ( j = m ) N g P j × l = 1 l j 10 K j , l ( p ) P j i = 2 5 A j i p ( c ) P j n e .
d d t n e = + n e [ i = 2 5 s i ( c ) S i + j = 1 10 p ( c ) P j ] + α T υ d n e + T 2 j = 2 j j 5 j = 2 5 S j S j + T i = 2 5 S i ( 2 ) D a ( 2 , 4 r ) 2 n e α r n e 2 .
I = e π r 2 υ d n e 2 h 0 ,
Δ I = e 2 π r 2 h 0 [ υ d ( n e ) laser on + υ E Δ E ( n e ) laser on υ d ( n e ) laser off ] .
l Δ E + R b Δ I = 0
Δ I = e 2 π r 2 h 0 υ d [ ( n e ) laser on ( n e ) laser off ] 1 + e 2 π r 2 h 0 υ d E R b l ( n e ) laser on .
I j i ( ω j i ) = ω j i 3 4 π 3 c 2 ( g j g i S i P j 1 ) × { 1 exp [ π 2 c 3 r ω j i 3 A j i g i 1 ( 2 π K T g M ) 1 / 2 ( g j S i g i P j ) ] } ,

Metrics