Abstract

The first ionization potential of hafnium, Hf i, has been determined as 55 047.9(3) cm−1 by double-resonance, fieldionization spectroscopy performed on an atomic beam produced by laser vaporization of a hafnium target.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Meggers, C. E. Moore, “The first spectrum of hafnium (Hf i),” Natl. Bur. Stand. (U.S.) Monogr. 153 (1976).
  2. E. G. Rauh, R. J. Ackermann, “The first ionization potentials of the transition metals,” J. Chem. Phys. 70, 1004 (1979).
    [CrossRef]
  3. C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. (U.S.) Circ.467, Vol. II (1952) and Vol. III(1958).
  4. C. E. Moore, “Ionization potentials and ionization limits derived from the analysis of optical spectra,” Natl. Stand. Ref. Data Ser. 34 (1970).
  5. P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
    [CrossRef]
  6. D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
    [CrossRef]
  7. C. L. Callender, P. A. Hackett, D. M. Rayner, “First-ionization potential of ruthenium, rhodium, and palladium by double-resonance, ionization spectroscopy,” J. Opt. Soc. Am. B 5, 614 (1988).
    [CrossRef]
  8. M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
    [CrossRef]

1988 (1)

1987 (1)

1986 (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

1985 (1)

M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

1979 (1)

E. G. Rauh, R. J. Ackermann, “The first ionization potentials of the transition metals,” J. Chem. Phys. 70, 1004 (1979).
[CrossRef]

1976 (1)

W. F. Meggers, C. E. Moore, “The first spectrum of hafnium (Hf i),” Natl. Bur. Stand. (U.S.) Monogr. 153 (1976).

1970 (1)

C. E. Moore, “Ionization potentials and ionization limits derived from the analysis of optical spectra,” Natl. Stand. Ref. Data Ser. 34 (1970).

1952 (1)

C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. (U.S.) Circ.467, Vol. II (1952) and Vol. III(1958).

Ackermann, R. J.

E. G. Rauh, R. J. Ackermann, “The first ionization potentials of the transition metals,” J. Chem. Phys. 70, 1004 (1979).
[CrossRef]

Bourne, O. L.

D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
[CrossRef]

M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Callender, C. L.

Hackett, P. A.

C. L. Callender, P. A. Hackett, D. M. Rayner, “First-ionization potential of ruthenium, rhodium, and palladium by double-resonance, ionization spectroscopy,” J. Opt. Soc. Am. B 5, 614 (1988).
[CrossRef]

D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Humphries, M. R.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Meggers, W. F.

W. F. Meggers, C. E. Moore, “The first spectrum of hafnium (Hf i),” Natl. Bur. Stand. (U.S.) Monogr. 153 (1976).

Mitchell, S. A.

D. M. Rayner, S. A. Mitchell, O. L. Bourne, P. A. Hackett, “First-ionization potential of niobium and molybdenum by double-resonance, field-ionization spectroscopy,” J. Opt. Soc. Am. B 4, 900 (1987).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

Moore, C. E.

W. F. Meggers, C. E. Moore, “The first spectrum of hafnium (Hf i),” Natl. Bur. Stand. (U.S.) Monogr. 153 (1976).

C. E. Moore, “Ionization potentials and ionization limits derived from the analysis of optical spectra,” Natl. Stand. Ref. Data Ser. 34 (1970).

C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. (U.S.) Circ.467, Vol. II (1952) and Vol. III(1958).

Rauh, E. G.

E. G. Rauh, R. J. Ackermann, “The first ionization potentials of the transition metals,” J. Chem. Phys. 70, 1004 (1979).
[CrossRef]

Rayner, D. M.

Chem. Phys. Lett. (1)

M. R. Humphries, O. L. Bourne, P. A. Hackett, “Laser isotope separation of zirconium atoms cooled in a supersonic beam,” Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

J. Chem. Phys. (2)

E. G. Rauh, R. J. Ackermann, “The first ionization potentials of the transition metals,” J. Chem. Phys. 70, 1004 (1979).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, D. M. Rayner, “The first ionization potential of zirconium atoms determined by two laser, field-ionization spectroscopy of high lying Rydberg Series,” J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

J. Opt. Soc. Am. B (2)

Natl. Bur. Stand. (U.S.) Circ. (1)

C. E. Moore, “Atomic energy levels,” Natl. Bur. Stand. (U.S.) Circ.467, Vol. II (1952) and Vol. III(1958).

Natl. Bur. Stand. (U.S.) Monogr. (1)

W. F. Meggers, C. E. Moore, “The first spectrum of hafnium (Hf i),” Natl. Bur. Stand. (U.S.) Monogr. 153 (1976).

Natl. Stand. Ref. Data Ser. (1)

C. E. Moore, “Ionization potentials and ionization limits derived from the analysis of optical spectra,” Natl. Stand. Ref. Data Ser. 34 (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Three high-lying Rydberg series of Hf i converging to a, 4F3/2; b, 4F5/2; and c, 4F7/2 levels of Hf ii observed by double-resonance, field-ionization spectroscopy through the 5 d 2 6 s ( a F 4 ) 6 p F 3 2 ° level. n* is the effective quantum number scale calculated from a fit of the experimental levels.

Fig. 2
Fig. 2

Dependence of the pseudoquantum defect, nn*, on the index n from the best fit for the three Hf i series shown in Fig. 1. The center lines are obtained with the best-fit values for ν ¯ 0. The flanking plots are obtained with ν ¯ 0 adjusted by ±2 cm−1.

Tables (1)

Tables Icon

Table 1 Convergence Limits of Hafnium Rydberg Series Accessed through the 5 d 2 6 s ( a 4 F ) 6 p F 3 2 ° Intermediate State of Hf i

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν ¯ = ν ¯ 0 R ( n d ) 2 ,

Metrics