Abstract

A model is given for the continual measurement of the inversion in a two-level system. The system is assumed to undergo oscillations between the two states. The effect of the measurement is determined by a Markovian master equation and one parameter Γ, which is a function of the measurement response bandwidth and the measuring device noise level. For rapid, accurate measurements, Γ is large. The two-level oscillation frequency provides a dynamical threshold. When Γ exceeds this threshold a two-level system prepared initially in the excited state remains so on a time scale of Γ. Thus, in the limit of Γ infinitely large, the dynamics is frozen. This is the Zeno effect. The relationship of this behavior to motional narrowing is discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum Zeno and anti-Zeno effects on the entanglement dynamics of qubits dissipating into a common and non-Markovian environment

A. Nourmandipour, M. K. Tavassoly, and M. A. Bolorizadeh
J. Opt. Soc. Am. B 33(8) 1723-1730 (2016)

Experimental demonstration of the optical Zeno effect by scanning tunneling optical microscopy

P. Biagioni, G. Della Valle, M. Ornigotti, M. Finazzi, L. Duò, P. Laporta, and S. Longhi
Opt. Express 16(6) 3762-3767 (2008)

Atomic quantum state transferring and swapping via quantum Zeno dynamics

Zhi-Cheng Shi, Yan Xia, Jie Song, and He-Shan Song
J. Opt. Soc. Am. B 28(12) 2909-2914 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription