Abstract

Experiments that produced 100-fsec pulses by a single-pass Raman amplification process did not lead to the expected self-frequency shift induced by intrapulse Raman scattering. We show that under conditions in which a Stokes pulse continues to receive frequency-dependent gain from a pump, a balance can be achieved between the two competing processes. Hence the progressive self-frequency shift of a soliton along a fiber can be suppressed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Doran, K. J. Blow, “Solitons in optical communications,” IEEE J. Quantum Electron. QE-19, 1883–1888 (1983).
    [CrossRef]
  2. V. E. Zakharov, A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  3. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11, 464–466 (1986).
    [CrossRef] [PubMed]
  4. K. J. Blow, N. J. Doran, D. Wood, “Trapping of energy into solitary waves in amplified nonlinear dispersive systems,” Opt. Lett. 12, 1011–1013 (1987).
    [CrossRef] [PubMed]
  5. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  6. K. J. Blow, N. J. Doran, D. Wood, “Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 5, 381–391 (1988).
    [CrossRef]
  7. K. J. Blow, N. J. Doran, D. Wood, “Polarization instabilities for solitons in birefririgent fibers,” Opt. Lett. 12, 202–204 (1987).
    [CrossRef] [PubMed]
  8. P. K. A. Wai, C. R. Menyuk, H. H. Chen, Y. C. Lee, “Soliton at the zero-group dispersion wavelength of a single-mode fiber,” Opt. Lett. 12, 628–630 (1987).
    [CrossRef] [PubMed]
  9. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  10. B. Zysset, P. Beaud, W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
    [CrossRef]
  11. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, “High-efficiency single-pass soliton Raman compression in an optical fiber around 1.4 μm,” Opt. Lett. 12, 1035–1037 (1987).
    [CrossRef] [PubMed]
  12. V. A. Vysloukh, V. N. Serkin, “Generation of high-energy solitons of stimulated Raman radiation in fiber light guides,” JETP Lett. 38, 199–202 (1984).
  13. E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

1988 (1)

1987 (5)

1986 (4)

1984 (1)

V. A. Vysloukh, V. N. Serkin, “Generation of high-energy solitons of stimulated Raman radiation in fiber light guides,” JETP Lett. 38, 199–202 (1984).

1983 (1)

N. J. Doran, K. J. Blow, “Solitons in optical communications,” IEEE J. Quantum Electron. QE-19, 1883–1888 (1983).
[CrossRef]

1972 (1)

V. E. Zakharov, A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Beaud, P.

B. Zysset, P. Beaud, W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Blow, K. J.

Chen, H. H.

Dianov, E. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

Doran, N. J.

Gomes, A. S. L.

Gordon, J. P.

Gouveia-Neto, A. S.

Hodel, W.

B. Zysset, P. Beaud, W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Lee, Y. C.

Menyuk, C. R.

Mitschke, F. M.

Mollenauer, L. F.

Nikonova, Z. S.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

Prokhorov, A. M.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

Serkin, V. N.

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

V. A. Vysloukh, V. N. Serkin, “Generation of high-energy solitons of stimulated Raman radiation in fiber light guides,” JETP Lett. 38, 199–202 (1984).

Shabat, A. B.

V. E. Zakharov, A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Taylor, J. R.

Vysloukh, V. A.

V. A. Vysloukh, V. N. Serkin, “Generation of high-energy solitons of stimulated Raman radiation in fiber light guides,” JETP Lett. 38, 199–202 (1984).

Wai, P. K. A.

Wood, D.

Zakharov, V. E.

V. E. Zakharov, A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Zysset, B.

B. Zysset, P. Beaud, W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

B. Zysset, P. Beaud, W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. J. Doran, K. J. Blow, “Solitons in optical communications,” IEEE J. Quantum Electron. QE-19, 1883–1888 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

V. A. Vysloukh, V. N. Serkin, “Generation of high-energy solitons of stimulated Raman radiation in fiber light guides,” JETP Lett. 38, 199–202 (1984).

Opt. Lett. (7)

Sov. Phys. Dokl. (1)

E. M. Dianov, Z. S. Nikonova, A. M. Prokhorov, V. N. Serkin, “Nonlinear dynamics of the amplification of solitons in the presence of stimulated Raman scattering in fiber-optic communication lines,” Sov. Phys. Dokl. 30, 689–691 (1986).

Sov. Phys. JETP (1)

V. E. Zakharov, A. B. Shabat, “Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Evolution of the normalized mean frequency ω ¯, of the Stokes wave in the absence of a pump (Γ = 0, td = 0.05, τ = 1.0) for the exact solution (crosses) and the model equations (solid line). (b) Comparison of the power spectra obtained at z = 50; the solid line is from the numerical calculations, and the dashed line is the result from the model.

Fig. 2
Fig. 2

(a) Evolution of the normalized mean frequency ω ¯, of the Stokes wave in the presence of a pump wave (Γ = 0.025, β = 1.5, td = 0.05) for the exact solution (crosses) and the model equations (solid line), (b) Comparison of the power spectra obtained at z = 50; the solid line is from the numerical calculations, and the dashed line is the result frotti the model.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i u z = 1 2 2 u t 2 + | u | 2 u ,
u ( z , t ) = 1 τ exp { i z 2 τ 2 } sech { t τ }
i u z = 1 2 2 u t 2 + i Γ { u + β 2 2 u t 2 } + u | u | 2 t d u | u | 2 t ,
u ( z , t ) = 1 τ ( z ) exp ( i { ω ( z ) [ t υ ( z ) ] α ( z ) } ) sech { t υ ( z ) τ ( z ) } .
d τ d z = 2 Γ { β 2 ω 2 τ + β 2 3 τ τ } ,
d ω d z = 8 t d 15 τ 4 4 Γ β 2 ω 3 τ 2
d α d z = ω 2 2 + 1 2 τ 2 ,
d υ d z = ω
2 τ f 2 = β 2 3 + ( β 4 9 + 16 t d 2 25 Γ 2 β 2 ) 1 / 2
ω f = 2 t d 5 Γ β 2 τ f 2 .
τ f β 3 + 6 3 25 t d 2 Γ 2 β 5 and ω f 6 t d 5 Γ β 4

Metrics