Abstract

A model is presented for predicting the emission spectra of trivalent lanthanide ions in sites of tetragonal symmetry in fluorite-structure crystal hosts. The utility of the model is examined by comparing the results of the calculations performed with the experimental data for the Eu3+:SrF2 system. The a priori calculated energy-level scheme is found to reproduce the 14 experimentally observed crystal-field levels of the 7FJ multiplets of Eu3+ with a rms deviation of 24.5 cm−1. Reasonably accurate model predictions of most emission-line intensities can also be obtained by including contributions from electrostatic shielding, wave-function expansion, and a modified energy separation between the 4f configuration and the g symmetry perturbing states.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
    [Crossref]
  2. J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
    [Crossref]
  3. F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
    [Crossref]
  4. N. Karayianis and C. A. Morrison, “Rare earth ion-host crystal interactions. 2. Local distortion and other effects in reconciling lattice sums and phenomenological Bkm,” Rep. TR-1682 (Harry Diamond Laboratories, Adelphi, Md., 1975).
  5. R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).
  6. C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, K. A. Gschneidner and L. Eyring, eds. (North-Holland, Amsterdam, 1982), p. 461.
    [Crossref]
  7. K. K. Deb, R. G. Buser, C. A. Morrison, and R. P. Leavitt, “Crystal fields and intensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: an efficient 4F3/2→ 4I9/2 LaOF:Nd laser,” J. Opt. Soc. Am. 71, 1463 (1981).
    [Crossref]
  8. R. P. Leavitt and C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980).
    [Crossref]
  9. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
    [Crossref]
  10. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
    [Crossref]
  11. K. Lesniak, “Model simulation of the tetragonal symmetry center of a rare-earth ion in a fluorite lattice,” J. Phys. C 19, 2721 (1986).
    [Crossref]
  12. M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
    [Crossref]
  13. R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
    [Crossref]
  14. J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
    [Crossref]
  15. J. P. Jouart, Laboratoire de Recherches Optiques, Faculté des Sciences, Université de Reims, Reims, France (personal communication).
  16. B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).
  17. R. M. Sternheimer, “Shielding and antishielding effects for various ions and atomic systems,” Phys. Rev. 146, 140 (1966).
    [Crossref]
  18. A. J. Freeman and R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962).
    [Crossref]
  19. P. Erdos and J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972).
    [Crossref]
  20. J. D. Axe, “Radiative transition probabilities within 4fn configuration. The fluorescence spectrum of europium ethylsulfate,” J. Chem. Phys. 39, 1154 (1963).
    [Crossref]
  21. G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171 (1963).
    [Crossref]
  22. C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, Mass., 1963).
  23. W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325 (1966).
    [Crossref]
  24. For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
    [Crossref]
  25. B. R. Judd, “An analysis of the fluorescence spectrum of neodymium chloride,” Proc. R. Soc. London Ser. A 251, 134 (1959).
    [Crossref]
  26. P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
    [Crossref]
  27. J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).
  28. R. D. Peacock, “The intensities of lanthanide f ↔ f transitions,” Struct. Bonding 22, 83 (1975).
    [Crossref]
  29. M. F. Reid and F. S. Richardson, “What do f–f electric dipole intensity parameters tell us about mechanism,” in Rare Earths Spectroscopy, B. Jezowska–Trzebiatowska, J. Legendziewicz, and W. Strek, eds. (World Scientific, Singapore, 1985), p. 298.
  30. C. A. Morrison, N. Karayianis, and D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).
  31. M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
    [Crossref]

1986 (2)

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
[Crossref]

K. Lesniak, “Model simulation of the tetragonal symmetry center of a rare-earth ion in a fluorite lattice,” J. Phys. C 19, 2721 (1986).
[Crossref]

1985 (2)

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

1983 (2)

M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
[Crossref]

M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
[Crossref]

1982 (3)

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
[Crossref]

1981 (1)

1980 (1)

R. P. Leavitt and C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980).
[Crossref]

1975 (1)

R. D. Peacock, “The intensities of lanthanide f ↔ f transitions,” Struct. Bonding 22, 83 (1975).
[Crossref]

1972 (1)

P. Erdos and J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972).
[Crossref]

1968 (2)

J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).

For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
[Crossref]

1966 (2)

R. M. Sternheimer, “Shielding and antishielding effects for various ions and atomic systems,” Phys. Rev. 146, 140 (1966).
[Crossref]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325 (1966).
[Crossref]

1963 (2)

J. D. Axe, “Radiative transition probabilities within 4fn configuration. The fluorescence spectrum of europium ethylsulfate,” J. Chem. Phys. 39, 1154 (1963).
[Crossref]

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171 (1963).
[Crossref]

1962 (3)

A. J. Freeman and R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

1959 (1)

B. R. Judd, “An analysis of the fluorescence spectrum of neodymium chloride,” Proc. R. Soc. London Ser. A 251, 134 (1959).
[Crossref]

Andeen, C. G.

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

Axe, J. D.

J. D. Axe, “Radiative transition probabilities within 4fn configuration. The fluorescence spectrum of europium ethylsulfate,” J. Chem. Phys. 39, 1154 (1963).
[Crossref]

Baker, J. M.

J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).

Becker, P. C.

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

Bissieux, C.

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

Blume, M.

For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
[Crossref]

Buser, R. G.

Catlow, C. R. A.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

Corish, J.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

Dallara, J. J.

M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
[Crossref]

Davies, E. R.

J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).

Deb, K. K.

Edelstein, N.

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

Egee, M.

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

Erdos, P.

P. Erdos and J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972).
[Crossref]

Fainstein, C.

M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
[Crossref]

Fontanella, J. J.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
[Crossref]

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

Freeman, A. J.

A. J. Freeman and R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962).
[Crossref]

Hamers, R. J.

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
[Crossref]

Hurrell, J. P.

J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).

Jacobs, P. W. M.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

Jouart, J. P.

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

J. P. Jouart, Laboratoire de Recherches Optiques, Faculté des Sciences, Université de Reims, Reims, France (personal communication).

Judd, B. R.

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

B. R. Judd, “An analysis of the fluorescence spectrum of neodymium chloride,” Proc. R. Soc. London Ser. A 251, 134 (1959).
[Crossref]

Kang, J. H.

P. Erdos and J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972).
[Crossref]

Karayianis, N.

C. A. Morrison, N. Karayianis, and D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).

N. Karayianis and C. A. Morrison, “Rare earth ion-host crystal interactions. 2. Local distortion and other effects in reconciling lattice sums and phenomenological Bkm,” Rep. TR-1682 (Harry Diamond Laboratories, Adelphi, Md., 1975).

Kimble, R. J.

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

Koster, G. F.

C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, Mass., 1963).

Krupke, W. F.

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325 (1966).
[Crossref]

Leavitt, R. C.

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

Leavitt, R. P.

K. K. Deb, R. G. Buser, C. A. Morrison, and R. P. Leavitt, “Crystal fields and intensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: an efficient 4F3/2→ 4I9/2 LaOF:Nd laser,” J. Opt. Soc. Am. 71, 1463 (1981).
[Crossref]

R. P. Leavitt and C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980).
[Crossref]

C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, K. A. Gschneidner and L. Eyring, eds. (North-Holland, Amsterdam, 1982), p. 461.
[Crossref]

R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).

Lesniak, K.

K. Lesniak, “Model simulation of the tetragonal symmetry center of a rare-earth ion in a fluorite lattice,” J. Phys. C 19, 2721 (1986).
[Crossref]

Lister, G. M. S.

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

Mary, G.

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

Morrison, C. A.

K. K. Deb, R. G. Buser, C. A. Morrison, and R. P. Leavitt, “Crystal fields and intensities of triply ionized rare-earth ions in cubic lanthanum oxyfluoride: an efficient 4F3/2→ 4I9/2 LaOF:Nd laser,” J. Opt. Soc. Am. 71, 1463 (1981).
[Crossref]

R. P. Leavitt and C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980).
[Crossref]

R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).

C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, K. A. Gschneidner and L. Eyring, eds. (North-Holland, Amsterdam, 1982), p. 461.
[Crossref]

N. Karayianis and C. A. Morrison, “Rare earth ion-host crystal interactions. 2. Local distortion and other effects in reconciling lattice sums and phenomenological Bkm,” Rep. TR-1682 (Harry Diamond Laboratories, Adelphi, Md., 1975).

C. A. Morrison, N. Karayianis, and D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).

Nielson, C. W.

C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, Mass., 1963).

Ofelt, G. S.

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171 (1963).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

Ong, S. H.

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

Peacock, R. D.

R. D. Peacock, “The intensities of lanthanide f ↔ f transitions,” Struct. Bonding 22, 83 (1975).
[Crossref]

Peierls, R. F.

For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
[Crossref]

Ramos, C. A.

M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
[Crossref]

Reid, M. F.

M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
[Crossref]

M. F. Reid and F. S. Richardson, “What do f–f electric dipole intensity parameters tell us about mechanism,” in Rare Earths Spectroscopy, B. Jezowska–Trzebiatowska, J. Legendziewicz, and W. Strek, eds. (World Scientific, Singapore, 1985), p. 298.

Richardson, F. S.

M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
[Crossref]

M. F. Reid and F. S. Richardson, “What do f–f electric dipole intensity parameters tell us about mechanism,” in Rare Earths Spectroscopy, B. Jezowska–Trzebiatowska, J. Legendziewicz, and W. Strek, eds. (World Scientific, Singapore, 1985), p. 298.

Sternheimer, R. M.

For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
[Crossref]

R. M. Sternheimer, “Shielding and antishielding effects for various ions and atomic systems,” Phys. Rev. 146, 140 (1966).
[Crossref]

Tovar, M.

M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
[Crossref]

Watson, R. E.

A. J. Freeman and R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962).
[Crossref]

Weesner, F. J.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
[Crossref]

Welcher, P. J.

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

Wietfeldt, J. R.

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
[Crossref]

Wintersgill, M. C.

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

Wortman, D. E.

C. A. Morrison, N. Karayianis, and D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).

R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).

Wright, J. C.

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
[Crossref]

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
[Crossref]

Wybourne, B. G.

B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).

J. Chem. Phys. (6)

R. J. Hamers, J. R. Wietfeldt, and J. C. Wright, “Defect chemistry in CaF2:Eu3+,” J. Chem. Phys. 77, 683 (1982).
[Crossref]

R. P. Leavitt and C. A. Morrison, “Crystal-field analysis of triply ionized rare earth ions in lanthanum trifluoride. II. Intensity calculations,” J. Chem. Phys. 73, 749 (1980).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511 (1962).
[Crossref]

J. D. Axe, “Radiative transition probabilities within 4fn configuration. The fluorescence spectrum of europium ethylsulfate,” J. Chem. Phys. 39, 1154 (1963).
[Crossref]

G. S. Ofelt, “Structure of the f6 configuration with application to rare-earth ions,” J. Chem. Phys. 38, 2171 (1963).
[Crossref]

M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated and experimental 4f→ 4f intensity parameters for lanthanide complexes with isotropic ligands,” J. Chem. Phys. 79, 5743 (1983).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. C (4)

P. C. Becker, N. Edelstein, B. R. Judd, R. C. Leavitt, and G. M. S. Lister, “The role of g electrons in the optical spectroscopy of lanthanide ions in crystals,” J. Phys. C 18, L1063 (1985).
[Crossref]

R. J. Kimble, P. J. Welcher, J. J. Fontanella, M. C. Wintersgill, and C. G. Andeen, “Computer modelling of simple point defects in rare-earth-doped alkaline-earth fluorides,” J. Phys. C 15, 3441 (1982).
[Crossref]

K. Lesniak, “Model simulation of the tetragonal symmetry center of a rare-earth ion in a fluorite lattice,” J. Phys. C 19, 2721 (1986).
[Crossref]

J. P. Jouart, C. Bissieux, G. Mary, and M. Egee, “A spectroscopic study of Eu3+ centers in SrF2 using a site-selective excitation technique,” J. Phys. C 18, 1539 (1985).
[Crossref]

Phys. Rev. (5)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750 (1962).
[Crossref]

R. M. Sternheimer, “Shielding and antishielding effects for various ions and atomic systems,” Phys. Rev. 146, 140 (1966).
[Crossref]

A. J. Freeman and R. E. Watson, “Theoretical investigations of some magnetic and spectroscopic properties of rare earth ions,” Phys. Rev. 127, 2058 (1962).
[Crossref]

W. F. Krupke, “Optical absorption and fluorescence intensities in several rare-earth doped Y2O3 and LaF3 single crystals,” Phys. Rev. 145, 325 (1966).
[Crossref]

For example, see R. M. Sternheimer, M. Blume, and R. F. Peierls, “Shielding of crystal fields at rare-earth ions,” Phys. Rev. 173, 376 (1968);D. Sengupta and J. O. Artman, “Crystal-field shielding parameters for Nd3+ and Np4+,” Phys. Rev. B 1, 2986 (1970);D. K. Ray, “Investigations into the origin of the crystalline electric field effects on rare earth ions. II. Contributions from the rare earth orbitals,” Proc. Phys. Soc. (London) 82, 47 (1963).
[Crossref]

Phys. Rev. B (4)

P. Erdos and J. H. Kang, “Electronic shielding of Pr3+and Tm3+ ions in crystals,” Phys. Rev. B 6, 3393 (1972).
[Crossref]

J. Corish, C. R. A. Catlow, P. W. M. Jacobs, and S. H. Ong, “Defect aggregation in anion excess fluorites. Dopant monomers and dimers,” Phys. Rev. B 25, 6425 (1982).
[Crossref]

M. Tovar, C. A. Ramos, and C. Fainstein, “Lattice distortions and local compressibility around trivalent rare-earth impurities in fluorites,” Phys. Rev. B 28, 4813 (1983).
[Crossref]

F. J. Weesner, J. C. Wright, and J. J. Fontanella, “Laser spectroscopy of ion-size effects on point-defect equilibria in PbF2:Eu3+,” Phys. Rev. B 33, 1372 (1986).
[Crossref]

Proc. R. Soc. London Ser. A (2)

B. R. Judd, “An analysis of the fluorescence spectrum of neodymium chloride,” Proc. R. Soc. London Ser. A 251, 134 (1959).
[Crossref]

J. M. Baker, E. R. Davies, and J. P. Hurrell, “Electron nuclear double resonance in calcium fluoride containing Yb3+ and Ce3+ in tetragonal sites,” Proc. R. Soc. London Ser. A 308, 403 (1968).

Struct. Bonding (1)

R. D. Peacock, “The intensities of lanthanide f ↔ f transitions,” Struct. Bonding 22, 83 (1975).
[Crossref]

Other (8)

M. F. Reid and F. S. Richardson, “What do f–f electric dipole intensity parameters tell us about mechanism,” in Rare Earths Spectroscopy, B. Jezowska–Trzebiatowska, J. Legendziewicz, and W. Strek, eds. (World Scientific, Singapore, 1985), p. 298.

C. A. Morrison, N. Karayianis, and D. E. Wortman, “Rare earth ion-host lattice interactions. 4. Predicting spectra and intensities of lanthanides in crystals,” Rep. TR-1816 (Harry Diamond Laboratories, Adelphi, Md., 1977).

N. Karayianis and C. A. Morrison, “Rare earth ion-host crystal interactions. 2. Local distortion and other effects in reconciling lattice sums and phenomenological Bkm,” Rep. TR-1682 (Harry Diamond Laboratories, Adelphi, Md., 1975).

R. P. Leavitt, C. A. Morrison, and D. E. Wortman, “Rare earth ion–host crystal interactions. 3. Three-parameter theory of crystal fields,” Rep. TR-1673 (Harry Diamond Laboratories, Adelphi, Md., 1975).

C. A. Morrison and R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, Vol. 5, K. A. Gschneidner and L. Eyring, eds. (North-Holland, Amsterdam, 1982), p. 461.
[Crossref]

J. P. Jouart, Laboratoire de Recherches Optiques, Faculté des Sciences, Université de Reims, Reims, France (personal communication).

B. G. Wybourne, Spectroscopic Properties of Rare Earths (Wiley, New York, 1965).

C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for the pn, dn, and fn Configurations (MIT Press, Cambridge, Mass., 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Local structure of the tetragonal center of a RE3+ ion in a fluorite lattice.

Fig. 2
Fig. 2

Definition of model relaxation parameters t1, t2, and t3.

Fig. 3
Fig. 3

Crystal-field splittings of the 7F1, 7F2, 7F3, and 7F4 multiplets of Eu3+ in tetragonal sites in SrF2. Model predictions (M) are compared with experimentally observed5 (E) level energies. All level energies are in inverse centimeters and are given with respect to the energy of the 7F0 level.

Tables (2)

Tables Icon

Table 1 Comparison of Model and Experimental 5D07FJ Transition Probabilities for the Tetragonal Center of Eu3+ in SrF2a

Tables Icon

Table 2 Selected Model and Experimental 5D07FJ Transition Probabilities for the Tetragonal Center of Eu3+ in SrF2

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B q k ¯ = τ k r k ( 1 σ k ) A q k ,
Q ( r ) = Z + A r exp ( r / ρ ) ,
a | P μ | b = J , M J , M a * ( J , M ) a ( J , M ) × α L S J M | P μ | α L S J M = J , M J , M λ = 2 , 4 , 6 k , q ( 1 ) q + μ + J M × ( 2 λ + 1 ) a * ( J , M ) a ( J , M ) × B λ k q α S L J U k α S L J × ( 1 λ k μ ( q + μ ) q ) ( J λ J M ( q + μ ) M ) .
Ξ ( k , λ ) = n , l ( 2 / E av ) 1 C ( 1 ) 1 1 C ( k ) 1 × f n | r | n l f n | r k | n l { 1 λ k 1 1 1 } .
σ k = 2 / k ( k + 1 ) .
n f n | r | n g exp f n | r k | n g exp = f n | r k + 1 | f n exp = τ k 1 f n | r k + 1 | f n ,

Metrics