Abstract

We have used the light from diode lasers (λ = 852 nm) to damp the motion of atoms in a cesium vapor. We have been able to contain more than 107 atoms for 0.2 sec and cool them to a temperature of 10030+100μK in this viscous photon medium (the so-called optical molasses).

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a review of this field, see the feature issue on the mechanical effects of light, J. Opt. Soc. Am. B 2, 1706 (1985).
  2. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
    [CrossRef] [PubMed]
  3. R. N. Watts, C. E. Wieman, Opt. Lett. 11, 291 (1986).
    [CrossRef]
  4. T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).
    [CrossRef]
  5. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  6. J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980);R. J. Cook, Phys. Rev. A 20, 224 (1979);Phys. Rev. Lett. 44, 976 (1980).
    [CrossRef]

1987 (1)

1986 (1)

1985 (2)

1980 (1)

J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980);R. J. Cook, Phys. Rev. A 20, 224 (1979);Phys. Rev. Lett. 44, 976 (1980).
[CrossRef]

1975 (1)

T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).
[CrossRef]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980);R. J. Cook, Phys. Rev. A 20, 224 (1979);Phys. Rev. Lett. 44, 976 (1980).
[CrossRef]

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Cable, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Chu, S.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Dahmani, B.

Drullinger, R.

Gordon, J. P.

J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980);R. J. Cook, Phys. Rev. A 20, 224 (1979);Phys. Rev. Lett. 44, 976 (1980).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).
[CrossRef]

Hollberg, L.

B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Schawlow, A. L.

T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).
[CrossRef]

Watts, R. N.

Wieman, C. E.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

T. W. Hänsch, A. L. Schawlow, Opt. Commun. 13, 68 (1975).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980);R. J. Cook, Phys. Rev. A 20, 224 (1979);Phys. Rev. Lett. 44, 976 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the apparatus. The third molasses beam, which was perpendicular to the other two, is not shown. FP1 and FP2 are the Fabry–Perot locking cavities. The saturated absorption spectrometers are labeled SAS1 and SAS2.

Fig. 2
Fig. 2

Real-time trace of the fluorescence. The black dots on the left-hand side show the level after each new bunch of atoms was loaded. After eight bunches the loading was stopped, and the right-hand side shows the subsequent decay of the fluorescence as the atoms diffuse away.

Fig. 3
Fig. 3

The dots show the fraction of the initial fluorescence that remained after the molasses laser was blocked for the time intervals shown. The solid line is the theoretical fit. Note that the data point at 41 msec is much lower than the theoretical curve because of gravitational effects.

Metrics