Abstract

Laser-induced damage morphologies and the accumulation dependence of damage on single-crystal metal surfaces have been observed under Q-switched 1064-nm Nd:YAG laser irradiation at 10-nsec pulses. Several different damage morphologies were observed: slip-line formation, ripple patterns, flat melting, and boiling. Damage probability versus fluence curves and accumulation curves are plotted to investigate damage behavior as it correlates with morphology. Flat-melting damage was observed near the 50% damage fluence on chemically polished copper surfaces, and slip lines were found near the 50% damage fluence on electropolished aluminum surfaces. Surface defects produced during sample preparation greatly influenced the damage threshold of copper because of its high melting threshold. Accumulation curves showed different damage behavior for crystals of different orientation. Accumulation was the largest on (111) Cu and Al surfaces, and the single-shot damage threshold of these surfaces was less than the other crystal orientations for both Cu and Al. The threshold reduction in accumulation follows the equation FN = F1NS−1, where FN is the N-pulse damage threshold, N is the pulse number, and S is the slope of the accumulation curve. Accumulation appears to be the result of the storage cycle of thermal stress–strain energy induced by a laser pulse. The total strain energy induced by N laser pulses is proportional to N1/3 for the measured values of S, which is 0.92.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
    [CrossRef]
  2. N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).
  3. S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
    [CrossRef]
  4. J. F. Figueira, S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381 (1982).
    [CrossRef]
  5. J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
    [CrossRef]
  6. C. D. Marrs, W. N. Faith, J. H. Dancy, J. O. Porteus, “Pulsed laser-induced damage of metals at 492 nm,” Appl. Opt. 21, 4063 (1982).
    [CrossRef] [PubMed]
  7. H. H. Hurt, “The effect of defects on the laser damage performance of metal mirror surfaces,” in Laser Induced Damage in Optical Materials: 1984, Natl. Bur. Stand. U.S. Spec. Pub. 996, 66 (1986).
    [CrossRef]
  8. M. Sparks, E. Loh, “Temperature dependence of absorptance in laser damage of metallic mirrors: I. Melting,” J. Opt. Soc. Am. 69, 847 (1979).
    [CrossRef]
  9. H. M. Musal, “Thermomechanical stress degradation of metal surfaces under pulsed laser irradiation,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. U.S. Spec. Pub. 568, 159 (1980).
  10. Y. Jee, M. F. Becker, R. M. Walser, “N-on-1 damage testing of single crystal metal surfaces at 1.06 μ m,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published); “Damage morphologies and cumulative behavior of laser damage on single crystal metal surfaces,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published).
  11. M. R. Mitchell, “Fundamentals of modern fatigue analysis for design,” in Fatigue and Microstructure (American Society for Metals, Metals Park, Ohio, 1979), p. 385.
  12. J. D. Morrow, “Cyclic plastic strain energy and fatigue of metals,” in International Friction Damping and Cyclic Plasticity (American Society for Testing & Materials, Philadelphia, Pa., 1965), p. 45.
    [CrossRef]
  13. L. F. Coffin, J. F. Tavernelli, “The cyclic straining and fatigue of metals,” Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. 215, 794 (1959).
  14. S. S. Manson, “Fatigue: a complex subject—some simple approximations,” Exp. Mech. 5, 193 (1965).
    [CrossRef]
  15. P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
    [CrossRef]
  16. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968).
  17. A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).
  18. R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
    [CrossRef]
  19. M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
    [CrossRef]
  20. F. E. Domann, M. F. Becker, A. H. Guenther, A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25, 1371 (1986).
    [CrossRef] [PubMed]
  21. J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
    [CrossRef]
  22. J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
    [CrossRef]
  23. P. M. Fauchet, A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
    [CrossRef]
  24. P. A. Temple, M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067 (1981).
    [CrossRef]
  25. A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-22, 1384 (1986).
    [CrossRef]
  26. J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971), p. 95.
  27. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser-induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661 (1973).
    [CrossRef] [PubMed]
  28. J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
    [CrossRef]
  29. F. Haessner, W. Seitz, “Laser-induced dislocation structures in copper single crystals,” J. Mat. Sci. 6, 16 (1971).
    [CrossRef]
  30. Y. Jee, Ph.D. dissertation (The University of Texas at Austin, Austin, Tex., 1987).
  31. D. Hull, Introduction to Dislocations, 2nd ed. (Pergamon, Oxford, 1975), p. 15.

1986 (3)

H. H. Hurt, “The effect of defects on the laser damage performance of metal mirror surfaces,” in Laser Induced Damage in Optical Materials: 1984, Natl. Bur. Stand. U.S. Spec. Pub. 996, 66 (1986).
[CrossRef]

F. E. Domann, M. F. Becker, A. H. Guenther, A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25, 1371 (1986).
[CrossRef] [PubMed]

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-22, 1384 (1986).
[CrossRef]

1985 (1)

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

1984 (1)

N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).

1983 (3)

J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
[CrossRef]

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

1982 (5)

C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
[CrossRef]

P. M. Fauchet, A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
[CrossRef]

C. D. Marrs, W. N. Faith, J. H. Dancy, J. O. Porteus, “Pulsed laser-induced damage of metals at 492 nm,” Appl. Opt. 21, 4063 (1982).
[CrossRef] [PubMed]

S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
[CrossRef]

J. F. Figueira, S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381 (1982).
[CrossRef]

1981 (1)

P. A. Temple, M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067 (1981).
[CrossRef]

1980 (1)

H. M. Musal, “Thermomechanical stress degradation of metal surfaces under pulsed laser irradiation,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. U.S. Spec. Pub. 568, 159 (1980).

1979 (1)

1978 (1)

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

1976 (1)

J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
[CrossRef]

1974 (1)

P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
[CrossRef]

1973 (1)

1971 (1)

F. Haessner, W. Seitz, “Laser-induced dislocation structures in copper single crystals,” J. Mat. Sci. 6, 16 (1971).
[CrossRef]

1965 (1)

S. S. Manson, “Fatigue: a complex subject—some simple approximations,” Exp. Mech. 5, 193 (1965).
[CrossRef]

1959 (1)

L. F. Coffin, J. F. Tavernelli, “The cyclic straining and fatigue of metals,” Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. 215, 794 (1959).

Bass, M.

N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).

C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
[CrossRef]

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

Becker, M. F.

F. E. Domann, M. F. Becker, A. H. Guenther, A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25, 1371 (1986).
[CrossRef] [PubMed]

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

Y. Jee, M. F. Becker, R. M. Walser, “N-on-1 damage testing of single crystal metal surfaces at 1.06 μ m,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published); “Damage morphologies and cumulative behavior of laser damage on single crystal metal surfaces,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published).

Bloembergen, N.

Coffin, L. F.

L. F. Coffin, J. F. Tavernelli, “The cyclic straining and fatigue of metals,” Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. 215, 794 (1959).

Dancy, J. H.

Decker, D. L.

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

Domann, F. D.

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

Domann, F. E.

Dunning, F. B.

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

Faith, W. N.

C. D. Marrs, W. N. Faith, J. H. Dancy, J. O. Porteus, “Pulsed laser-induced damage of metals at 492 nm,” Appl. Opt. 21, 4063 (1982).
[CrossRef] [PubMed]

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

Fauchet, P. M.

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-22, 1384 (1986).
[CrossRef]

P. M. Fauchet, A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
[CrossRef]

Figueira, J. F.

J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
[CrossRef]

S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
[CrossRef]

J. F. Figueira, S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381 (1982).
[CrossRef]

Fountain, C. W.

J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
[CrossRef]

Guenther, A. H.

F. E. Domann, M. F. Becker, A. H. Guenther, A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25, 1371 (1986).
[CrossRef] [PubMed]

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

Haessner, F.

F. Haessner, W. Seitz, “Laser-induced dislocation structures in copper single crystals,” J. Mat. Sci. 6, 16 (1971).
[CrossRef]

Harrison, R. F.

J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
[CrossRef]

S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
[CrossRef]

Hull, D.

D. Hull, Introduction to Dislocations, 2nd ed. (Pergamon, Oxford, 1975), p. 15.

Hurt, H. H.

H. H. Hurt, “The effect of defects on the laser damage performance of metal mirror surfaces,” in Laser Induced Damage in Optical Materials: 1984, Natl. Bur. Stand. U.S. Spec. Pub. 996, 66 (1986).
[CrossRef]

Jamison, K. D.

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

Jee, Y.

Y. Jee, Ph.D. dissertation (The University of Texas at Austin, Austin, Tex., 1987).

Y. Jee, M. F. Becker, R. M. Walser, “N-on-1 damage testing of single crystal metal surfaces at 1.06 μ m,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published); “Damage morphologies and cumulative behavior of laser damage on single crystal metal surfaces,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published).

Jernigan, J. L.

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

Klesnil, M.

P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
[CrossRef]

Koumvakalis, N.

N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).

C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
[CrossRef]

Lee, C. S.

N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).

C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
[CrossRef]

Loh, E.

Lukas, P.

P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
[CrossRef]

Manson, S. S.

S. S. Manson, “Fatigue: a complex subject—some simple approximations,” Exp. Mech. 5, 193 (1965).
[CrossRef]

Marrs, C. D.

McConnell, R. P.

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

Mitchell, M. R.

M. R. Mitchell, “Fundamentals of modern fatigue analysis for design,” in Fatigue and Microstructure (American Society for Metals, Metals Park, Ohio, 1979), p. 385.

Morrow, J. D.

J. D. Morrow, “Cyclic plastic strain energy and fatigue of metals,” in International Friction Damping and Cyclic Plasticity (American Society for Testing & Materials, Philadelphia, Pa., 1965), p. 45.
[CrossRef]

Musal, H. M.

H. M. Musal, “Thermomechanical stress degradation of metal surfaces under pulsed laser irradiation,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. U.S. Spec. Pub. 568, 159 (1980).

Polak, J.

P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
[CrossRef]

Porteus, J. O.

C. D. Marrs, W. N. Faith, J. H. Dancy, J. O. Porteus, “Pulsed laser-induced damage of metals at 492 nm,” Appl. Opt. 21, 4063 (1982).
[CrossRef] [PubMed]

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
[CrossRef]

Preston, J. S.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

Ready, J. F.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971), p. 95.

Seitz, W.

F. Haessner, W. Seitz, “Laser-induced dislocation structures in copper single crystals,” J. Mat. Sci. 6, 16 (1971).
[CrossRef]

Siegman, A. E.

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-22, 1384 (1986).
[CrossRef]

P. M. Fauchet, A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
[CrossRef]

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968).

Sipe, J. E.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

Soileau, M. J.

P. A. Temple, M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067 (1981).
[CrossRef]

J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
[CrossRef]

Sparks, M.

Stewart, A. F.

F. E. Domann, M. F. Becker, A. H. Guenther, A. F. Stewart, “Charged particle emission related to laser damage,” Appl. Opt. 25, 1371 (1986).
[CrossRef] [PubMed]

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

Tavernelli, J. F.

L. F. Coffin, J. F. Tavernelli, “The cyclic straining and fatigue of metals,” Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. 215, 794 (1959).

Temple, P. A.

P. A. Temple, M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067 (1981).
[CrossRef]

Thomas, S. J.

J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
[CrossRef]

J. F. Figueira, S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381 (1982).
[CrossRef]

S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
[CrossRef]

van Driel, H. M.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

Walser, R. M.

Y. Jee, M. F. Becker, R. M. Walser, “N-on-1 damage testing of single crystal metal surfaces at 1.06 μ m,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published); “Damage morphologies and cumulative behavior of laser damage on single crystal metal surfaces,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published).

Walters, G. K.

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Young, J. F.

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

J. O. Porteus, M. J. Soileau, C. W. Fountain, “Slip banding in Al single crystals produced by 10.6-μ m laser pulses,” Appl. Phys. Lett. 29, 156 (1976).
[CrossRef]

P. M. Fauchet, A. E. Siegman, “Surface ripples on silicon and gallium arsenide under picosecond laser illumination,” Appl. Phys. Lett. 40, 824 (1982).
[CrossRef]

C. S. Lee, N. Koumvakalis, M. Bass, “Spot-size dependence of laser-induced damage to diamond-turned Cu mirrors,” Appl. Phys. Lett. 41, 625 (1982).
[CrossRef]

S. J. Thomas, R. F. Harrison, J. F. Figueira, “Observation of the morphology of laser-induced damage in copper mirrors,” Appl. Phys. Lett. 40, 200 (1982).
[CrossRef]

Exp. Mech. (1)

S. S. Manson, “Fatigue: a complex subject—some simple approximations,” Exp. Mech. 5, 193 (1965).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. F. Figueira, S. J. Thomas, “Damage thresholds at metal surfaces for short pulse IR lasers,” IEEE J. Quantum Electron. QE-18, 1381 (1982).
[CrossRef]

P. A. Temple, M. J. Soileau, “Polarization charge model for laser-induced ripple patterns in dielectric materials,” IEEE J. Quantum Electron. QE-17, 2067 (1981).
[CrossRef]

A. E. Siegman, P. M. Fauchet, “Stimulated Wood’s anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron. QE-22, 1384 (1986).
[CrossRef]

J. O. Porteus, D. L. Decker, J. L. Jernigan, W. N. Faith, M. Bass, “Evaluation of metal mirrors for high-power applications by multithreshold damage analysis,” IEEE J. Quantum Electron. QE-14, 776 (1978).
[CrossRef]

J. Mat. Sci. (1)

F. Haessner, W. Seitz, “Laser-induced dislocation structures in copper single crystals,” J. Mat. Sci. 6, 16 (1971).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

R. P. McConnell, K. D. Jamison, F. B. Dunning, G. K. Walters, “Laser annealing of Ni (001),” J. Vac. Sci. Technol. A 1, 1852 (1983).
[CrossRef]

Laser Induced Damage in Optical Materials: 1979 (1)

H. M. Musal, “Thermomechanical stress degradation of metal surfaces under pulsed laser irradiation,” in Laser Induced Damage in Optical Materials: 1979, Natl. Bur. Stand. U.S. Spec. Pub. 568, 159 (1980).

Laser Induced Damage in Optical Materials: 1981 (1)

J. F. Figueira, S. J. Thomas, R. F. Harrison, “Damage thresholds to metal mirrors by short-pulse CO2laser radiation,” in Laser Induced Damage in Optical Materials: 1981, Natl. Bur. Stand. U.S. Spec. Pub. 638, 229 (1983).
[CrossRef]

Laser Induced Damage in Optical Materials: 1982 (1)

N. Koumvakalis, C. S. Lee, M. Bass, “Single and multiple pulse catastrophic damage in Cu and Ag diamond-turned mirrors at 10.6, 1.06 and 0.532 μ m,” in Laser Induced Damage in Optical Materials: 1982, Natl. Bur. Stand. U.S. Spec. Pub. 669, 186 (1984).

Laser Induced Damage in Optical Materials: 1983 (1)

M. F. Becker, F. D. Domann, A. F. Stewart, A. H. Guenther, “Charge emission and related precursor events associated with laser damage,” in Laser Induced Damage in Optical Materials: 1983, Natl. Bur. Stand. U.S. Spec. Pub. 688, 429 (1985).
[CrossRef]

Laser Induced Damage in Optical Materials: 1984 (1)

H. H. Hurt, “The effect of defects on the laser damage performance of metal mirror surfaces,” in Laser Induced Damage in Optical Materials: 1984, Natl. Bur. Stand. U.S. Spec. Pub. 996, 66 (1986).
[CrossRef]

Mat. Sci. Eng. (1)

P. Lukas, M. Klesnil, J. Polak, “High cycle fatigue life of metals,” Mat. Sci. Eng. 15, 239 (1974).
[CrossRef]

Phys. Rev. B (1)

J. F. Young, J. S. Preston, H. M. van Driel, J. E. Sipe, “Laser-induced periodic surface structure,” Phys. Rev. B 27, 1155 (1983); Z. Guosheng, P. M. Fauchet, A. E. Siegman, “Growth of spontaneous periodic surface structures on solids during laser illumination,” Phys. Rev. B 26, 5366 (1982); S. R. J. Brueck, D. J. Ehrlich, “Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser photo-deposited metal films,” Phys. Rev. Lett. 48, 1678 (1982).
[CrossRef]

Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. (1)

L. F. Coffin, J. F. Tavernelli, “The cyclic straining and fatigue of metals,” Trans. Metall. Soc. Am. Inst. Min. Metall. Pet. Eng. 215, 794 (1959).

Other (8)

Y. Jee, Ph.D. dissertation (The University of Texas at Austin, Austin, Tex., 1987).

D. Hull, Introduction to Dislocations, 2nd ed. (Pergamon, Oxford, 1975), p. 15.

J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971), p. 95.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968).

A. Yariv, Quantum Electronics, 2nd ed. (Wiley, New York, 1975).

Y. Jee, M. F. Becker, R. M. Walser, “N-on-1 damage testing of single crystal metal surfaces at 1.06 μ m,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published); “Damage morphologies and cumulative behavior of laser damage on single crystal metal surfaces,” Natl. Bur. Stand. U.S. Spec. Pub. (to be published).

M. R. Mitchell, “Fundamentals of modern fatigue analysis for design,” in Fatigue and Microstructure (American Society for Metals, Metals Park, Ohio, 1979), p. 385.

J. D. Morrow, “Cyclic plastic strain energy and fatigue of metals,” in International Friction Damping and Cyclic Plasticity (American Society for Testing & Materials, Philadelphia, Pa., 1965), p. 45.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Damage probability curve for chemically polished Cu (110) surfaces for N = 1, 10-nsec pulse: crosses, single sites; squares, probabilities in the damage–nondamage overlap region.

Fig. 2
Fig. 2

Nomarski micrographs of the single-shot damage morphologies observed with increasing incident laser fluence on chemically polished Cu (110) surfaces for N = 1: a, surface-cleaning and tiny slip lines at 10.0 J/cm2; b, onset of the ripple pattern at 10.6 J/cm2; c, surface-cleaning and ripple pattern formation at 10.8 J/cm2; d, ripple-pattern formation at 10.9 J/cm2; e, flat melting in the center area at 11.4 J/cm2; f, onset of boiling damage at 11.6 J/cm2; g, typical boiling-damage morphology at 12.0 J/cm2; h, boiling damage at a higher fluence, 18.2 J/cm2.

Fig. 3
Fig. 3

The single-pulse damage morphologies are summarized in this diagram. As the incident laser energy fluence increases, surface cleaning and slip lines, ripple patterns, flat melting, and boiling damage are generated in succession. The onset fluence for these damage morphologies is given for chemically polished Cu (110) surfaces.

Fig. 4
Fig. 4

In this damage probability curve, the damage morphologies observed in Fig. 2 are correlated with the damage probability curve of Fig. 1 [for chemically polished Cu (110), N = 1]. Labels indicate the onset fluence for each damage morphology.

Fig. 5
Fig. 5

Damage probability curve of electropolished Al (111) surfaces for N = 1. Labels indicate the onset fluence of each morphology. The data points used to create the curve are omitted for clarity.

Fig. 6
Fig. 6

Nomarski micrographs of the single-shot damage morphologies observed with increasing incident laser fluence on electropolished Al (111) for N = 1: a, slip-line formation at 1.2 J/cm2; b, slip-line formation at 1.4 J/cm2; c, slip-line formation at 2.2 J/cm2; d, ripple-pattern formation at 2.6 J/cm2; e, boiling damage in the center area at 3.4 J/cm2; f, a large boiling-damage area and slip lines at 16.8 J/cm2.

Fig. 7
Fig. 7

Damage fluence versus pulse number curves for the different crystallographic orientations of chemically polished Cu surfaces.

Fig. 8
Fig. 8

Accumulation curves replotted from Fig. 7.

Fig. 9
Fig. 9

Stress–strain curve plotted for S = 0.92. In the inset the relation of the cyclic strain-hardening exponent n and the slope S is given. The slope S should be within the range of 0.8 < S < 1 to represent proper thermal stress–strain behavior, which is a positive n.

Fig. 10
Fig. 10

Normalized plastic strain versus pulse number N for various values of S.

Fig. 11
Fig. 11

Total plastic-strain energy versus pulse number N for various values of S.

Tables (2)

Tables Icon

Table 1 Polishing Methods and Solutionsa

Tables Icon

Table 2 Comparison of Theoretical and Experimental Damage Fluences (J/cm2)a

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F D = F peak exp ( - 2 x D 2 / w d 2 ) ,
u = - ( 1 + ν ) ( 1 - ν ) α x = 0 x d T ( x ) d x .
u = ( 1 + ν ) Y d / E = 2 ( 1 + ν ) Y ( K d t p ) 1 / 2 / E .
F N = F 1 N S - 1 ,
d T = 2 A ( π K C t p ) 1 / 2 F
σ = σ f N b ,
b = S - 1 ,
σ f = 2 A E α F 1 ( 1 - n ) ( π K C t p ) 1 / 2 .
p = f N c ,
σ = σ f ( p / f ) n ,
b = - n / ( 1 + 5 n ) ,
c = - 1 / ( 1 + 5 n ) ,
n = b / c .
n = ( 1 - S ) / ( 5 S - 4 ) ,
c = 4 - 5 S .
d W = σ p - 0 2 σ p d σ = 2 σ p ( 1 - n ) / ( 1 + n ) .
W = d W N = 2 [ ( 1 - n ) / ( 1 + n ) ] σ f f N b + c + 1 .
d W = 2 [ ( 6 S - 5 ) / ( 4 S - 3 ) ] σ f f N 3 - 4 S ,
W = 2 [ ( 6 S - 5 ) / ( 4 S - 3 ) ] σ f f N 4 ( 1 - S ) .

Metrics