Abstract

The coupling of high-power optical pulses into integrated-optics waveguides exhibiting nonlinearities is treated theoretically. A general result is that the coupling efficiency varies with pulse energy. Furthermore, the output pulses are distorted relative to the input pulses. For input pulses symmetric in time about their peak amplitude, the output pulses are asymmetric and symmetric for nonlinearities with turn-off times slower and faster, respectively, than the pulse width. Coupling efficiency and pulse distortion are also evaluated for interference between slow and fast nonlinearities of opposite sign. Finally, the dependence of the temporal pulse profile on the ratio of the pulse width to nonlinearity relaxation time is examined.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, J. Opt. Soc. Am. 60, 1337 (1970).
    [CrossRef]
  2. G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
    [CrossRef]
  3. C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
    [CrossRef]
  4. W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
    [CrossRef]
  5. Y. J. Chen and G. M. Carter, Solid State Commun. 45, 277 (1983); G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).
    [CrossRef]
  6. C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).
    [CrossRef]
  7. Y. J. Chen and G. M. Carter, Appl. Phys. Lett. 41, 307 (1982).
    [CrossRef]
  8. G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
    [CrossRef]
  9. Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
    [CrossRef]
  10. J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
    [CrossRef]
  11. S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
    [CrossRef]
  12. R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
    [CrossRef]
  13. G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett. 11, 644 (1986).
    [CrossRef] [PubMed]
  14. W. Lukosz, P. Pirani, and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-VerlagBerlin, 1986), p. 109.
    [CrossRef]
  15. F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
    [CrossRef]
  16. F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
    [CrossRef]
  17. G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
    [CrossRef]
  18. V. J. Montemayor and R. T. Deck, J. Opt. Soc. Am. B 2, 1010 (1985); R. Reinisch, P. Arlot, G. Vitrant, and E. Pic, Appl. Phys. Lett. 47, 1248 (1985).
    [CrossRef]
  19. G. Vitrant and P. Arlot, Appl. Phys. Lett. 61, 4744 (1987).
  20. P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
    [CrossRef]
  21. R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
    [CrossRef]
  22. E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).
  23. G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
    [CrossRef]
  24. M. Romanogli and G. I. Stegeman, “Saturation of guided-wave index with power in nonlinear planar waveguides,” Opt. Commun. (to be published).

1988 (1)

1987 (4)

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

G. Vitrant and P. Arlot, Appl. Phys. Lett. 61, 4744 (1987).

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

1986 (5)

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett. 11, 644 (1986).
[CrossRef] [PubMed]

1985 (5)

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

V. J. Montemayor and R. T. Deck, J. Opt. Soc. Am. B 2, 1010 (1985); R. Reinisch, P. Arlot, G. Vitrant, and E. Pic, Appl. Phys. Lett. 47, 1248 (1985).
[CrossRef]

P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
[CrossRef]

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

1984 (2)

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).
[CrossRef]

1983 (2)

Y. J. Chen and G. M. Carter, Solid State Commun. 45, 277 (1983); G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).
[CrossRef]

G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
[CrossRef]

1982 (1)

Y. J. Chen and G. M. Carter, Appl. Phys. Lett. 41, 307 (1982).
[CrossRef]

1970 (1)

Arlot, P.

G. Vitrant and P. Arlot, Appl. Phys. Lett. 61, 4744 (1987).

Assanto, G.

R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
[CrossRef]

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett. 11, 644 (1986).
[CrossRef] [PubMed]

Ballantyne, J. M.

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

Boggess, T. F.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Briguet, V.

W. Lukosz, P. Pirani, and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-VerlagBerlin, 1986), p. 109.
[CrossRef]

Carter, G. M.

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

Y. J. Chen and G. M. Carter, Solid State Commun. 45, 277 (1983); G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).
[CrossRef]

G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
[CrossRef]

Y. J. Chen and G. M. Carter, Appl. Phys. Lett. 41, 307 (1982).
[CrossRef]

Chelli, H.

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

Chen, Y. J.

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
[CrossRef]

Y. J. Chen and G. M. Carter, Solid State Commun. 45, 277 (1983); G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).
[CrossRef]

Y. J. Chen and G. M. Carter, Appl. Phys. Lett. 41, 307 (1982).
[CrossRef]

Cullen, T. J.

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

Deck, R. T.

Delisle, C.

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

Fortenberry, R. M.

R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Gabel, A.

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

Gibson, U. J.

Guha, S.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Hetherington, W. M.

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Ho, Z. Z.

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Ironside, C. N.

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

Jerominiek, H.

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

Karaguleff, C.

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

Koenig, E. W.

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Koster, A.

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

Kuchibhatla, D.

Laval, S.

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

Liao, C.

C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).
[CrossRef]

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

Lukosz, W.

W. Lukosz, P. Pirani, and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-VerlagBerlin, 1986), p. 109.
[CrossRef]

Mai, X.

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

Martinot, P.

P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
[CrossRef]

Montemayor, V. J.

Moshrefzadeh, R.

R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

Paraire, N.

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

Pardo, F.

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

Patela, S.

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

Pirani, P.

W. Lukosz, P. Pirani, and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-VerlagBerlin, 1986), p. 109.
[CrossRef]

Romanogli, M.

M. Romanogli and G. I. Stegeman, “Saturation of guided-wave index with power in nonlinear planar waveguides,” Opt. Commun. (to be published).

Seaton, C. T.

R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
[CrossRef]

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett. 11, 644 (1986).
[CrossRef] [PubMed]

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

Shoemaker, R. L.

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

Smírl, A. L.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Soileau, M. J.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Sonek, G. J.

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

Stegeman, G. I.

R. M. Fortenberry, G. Assanto, R. Moshrefzadeh, C. T. Seaton, and G. I. Stegeman, J. Opt. Soc. Am. B 5, 425 (1988).
[CrossRef]

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I. Stegeman, Opt. Lett. 11, 644 (1986).
[CrossRef] [PubMed]

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).
[CrossRef]

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

M. Romanogli and G. I. Stegeman, “Saturation of guided-wave index with power in nonlinear planar waveguides,” Opt. Commun. (to be published).

Svensson, B.

Tremblay, R.

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

Tripathy, S. K.

G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
[CrossRef]

Ulrich, R.

Valera, J. D.

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

van Stryland, E. W.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Vanherzeele, H.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Vitrant, G.

G. Vitrant and P. Arlot, Appl. Phys. Lett. 61, 4744 (1987).

Walker, A. C.

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

Woodall, M. A.

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Wright, E. M.

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

Zanoni, R.

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

Appl. Phys. Lett. (8)

C. Karaguleff, G. I. Stegeman, R. Zanoni, and C. T. Seaton, Appl. Phys. Lett. 7, 621 (1985).
[CrossRef]

C. Liao and G. I. Stegeman, Appl. Phys. Lett. 44, 164 (1984); C. Liao, G. I. Stegeman, C. T. Seaton, R. L. Shoemaker, J. D. Valera, and H. G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).
[CrossRef]

Y. J. Chen and G. M. Carter, Appl. Phys. Lett. 41, 307 (1982).
[CrossRef]

G. M. Carter, Y. J. Chen, and S. K. Tripathy, Appl. Phys. Lett. 43, 891 (1983).
[CrossRef]

Y. J. Chen, G. M. Carter, G. J. Sonek, and J. M. Ballantyne, Appl. Phys. Lett. 48, 272 (1986).
[CrossRef]

J. D. Valera, C. T. Seaton, G. I. Stegeman, R. L. Shoemaker, X. Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).
[CrossRef]

R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, Appl. Phys. Lett. 49, 6987 (1986).
[CrossRef]

G. Vitrant and P. Arlot, Appl. Phys. Lett. 61, 4744 (1987).

Chem. Phys. Lett. (1)

W. M. Hetherington, Z. Z. Ho, E. W. Koenig, R. M. Fortenberry, and G. I. Stegeman, Chem. Phys. Lett. 128, 150 (1986).
[CrossRef]

Electron. Lett. (1)

G. Assanto, A. Gabel, C. T. Seaton, G. I. Stegeman, C. N. Ironside, and T. J. Cullen, Electron. Lett. 23, 484 (1987).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. Pardo, H. Chelli, A. Koster, N. Paraire, and S. Laval, IEEE J. Quantum Electron. QE-23, 545 (1987).
[CrossRef]

P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Electron. QE-21, 1140 (1985).
[CrossRef]

J. Appl. Phys. (2)

G. I. Stegeman and C. T. Seaton, J. Appl. Phys. 58, R57 (1985).
[CrossRef]

S. Patela, H. Jerominiek, C. Delisle, and R. Tremblay, J. Appl. Phys. 60, 1591 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

G. I. Stegeman, C. T. Seaton, A. C. Walker, C. N. Ironside, and T. J. Cullen, Opt. Commun. 61, 277 (1987).
[CrossRef]

Opt. Eng. (1)

E. W. van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smírl, S. Guha, and T. F. Boggess, Opt. Eng. 24, 613 (1985).

Opt. Lett. (1)

Solid State Commun. (1)

Y. J. Chen and G. M. Carter, Solid State Commun. 45, 277 (1983); G. M. Carter and Y. J. Chen, Appl. Phys. Lett. 42, 643 (1983).
[CrossRef]

Other (3)

W. Lukosz, P. Pirani, and V. Briguet, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-VerlagBerlin, 1986), p. 109.
[CrossRef]

F. Pardo, A. Koster, H. Chelli, N. Paraire, and S. Laval, in Optical Bistability III, H. M. Gibbs, P. Mandel, N. Peyghambarian, and S. D. Smith, eds. (Springer-Verlag, Berlin, 1986), p. 83.
[CrossRef]

M. Romanogli and G. I. Stegeman, “Saturation of guided-wave index with power in nonlinear planar waveguides,” Opt. Commun. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

The coupling geometry. A Gaussian beam along the x axis is incident at an angle θ onto the prism base whose 90° corner is located at xs. A guided wave is generated and propagates for x > xs in the free waveguide.

Fig. 2
Fig. 2

The coupling efficiency versus pulse energy for a, a nonlinear substrate with n2eff(thermal) = 10−14 m2/W and no saturation; b, n2(electronic) = −10−14 m2/W with |Δβsat| = 5k0, i.e., effectively no saturation; c, n2(electronic) = −10−14 m2/W and Δβsat = −10−14k0.

Fig. 3
Fig. 3

The coupling efficiency versus pulse energy for n2(electronic) = −10−14 m2/W and for various ratios of n2 (electronic)/n2eff(thermal): a, −1; b, −2; c, −0.3536; d, −0.1768.

Fig. 4
Fig. 4

Coupling efficiency versus position of the prism edge (xs/w0) for the integrating nonlinearity n2eff(thermal) = 10−14 m2/W for three different pulse energies: solid line, 1d − 7; long dashes, 1d − 4; short dashes, 2d − 6.

Fig. 5
Fig. 5

Coupling efficiency versus position of the prism edge (xs/w0) for Kerr medium (solid lines) and Kerr + integrating (dashed lines) nonlinearities for three different pulse energies: a, 10−7 J/mm; b, c, 2 × 10−6 J/mm; d, e, 10−4 J/mm.

Fig. 6
Fig. 6

Coupling efficiency versus the ratio l/w0 for two different input pulse energies: a, b, 2 × 10−6 J/mm; c, d, 10−7 J/mm. Here n2(electronic) = 10−14 m2/W and n2eff(thermal)/n2(electronic) = −2.828.

Fig. 7
Fig. 7

Comparison of the decrease in coupling efficiency with incident pulse energy for a, one- and b, two-photon-generated thermal nonlinearities.

Fig. 8
Fig. 8

Variation in pulse profile with incident pulse energy, which varies logarithmically from 10−7 (Em) to 10−4 (Ex) J/mm for an integrating nonlinearity with n2eff(thermal) = 10−14 m2/W.

Fig. 9
Fig. 9

Variation in output pulse envelope with incident pulse which varies logarithmically from 10−7 (Em) to 10−4 (Es) J/mm for energy, a Kerr medium with n2(electronic) = −10−14 m2/W and a saturation Δβsat = −10−4k0.

Fig. 10
Fig. 10

Variation in the output pulse envelope with incident pulse energy, which varies logarithmically from 10−7 (Em) to 10−4 (Es) J/mm for an absorptive nonlinearity n2eff(thermal) = 10−14 m2/W and ΔN = 10.

Fig. 11
Fig. 11

Variation in the output pulse envelope with initial detuning ΔN for 10−7 J/mm incident pulse energy for either n2(electronic) = −10−14 m2/W or n2eff(thermal) = 10−14 m2/W.

Fig. 12
Fig. 12

Variation in the output pulse temporal profile with initial detuning ΔN for 3.5 × 10−5 J/mm incident pulse energy for n2eff(thermal) = 10−14 m2/W.

Fig. 13
Fig. 13

Variation in the output pulse temporal profile with initial detuning ΔN for 10−3 J/mm incident pulse energy for n2eff(thermal) = 10−14 m2/W.

Fig. 14
Fig. 14

The output pulse temporal profile obtained at different values of the prism edge position (xs/w0) for an integrating nonlinearity and an input pulse energy of 1.35 × 10−5 J/mm.

Fig. 15
Fig. 15

The output pulse temporal profile obtained for the xs/w0 = 0.72 case of Fig. 14 but with averaging over a Gaussian spatial profile along the y axis. Here the pulse energy is 2 × 10−5 J.

Fig. 16
Fig. 16

The output versus input power for a single Gaussian pulse for ΔN = 10, an integrating nonlinearity [n2eff(thermal) = 10−14 m2/W] with an incident pulse energy of 2 × 10−5 J/mm.

Fig. 17
Fig. 17

Variation in the output pulse temporal profile with initial detuning ΔN for 3.5 × 10−5 J/mm incident pulse energy with n2 (electronic) = −10−14 m2/W.

Fig. 18
Fig. 18

Variation in the output pulse temporal profile with initial detuning ΔN for 3.5 × 10−5 J/mm incident pulse energy with n2(electronic) = −10−14 m2/W and Δβsat = −10−14k0.

Fig. 19
Fig. 19

Variation in the output pulse temporal profile with ΔN = 0 for variable incident pulse energy with n2(electronic) = −10−14 m2/W and n2eff(thermal) = 10−14 m2/W.

Fig. 20
Fig. 20

Variation in the output pulse temporal profile (coupling efficiency) with ΔN = 0 for variable incident pulse energy with n2(electronic) = −10−14 m2/W and variable effective thermal nonlinearity: solid lines, n2eff(thermal) = 10−14 m2/W and ΔE = 10−6, 10−5, and 10−4 J/mm for (a), (b), and (c), respectively. The other pulse profiles were calculated for ΔE = 10−5 J/mm and for n2eff(thermal) = 5 × 10−15 (dashed–dotted line), 2 × 10−14 (dashed line), and 5 × 10−14 (dotted line), all in square meters per watt.

Fig. 21
Fig. 21

Envelopes (coupling efficiency) of Q-switched, mode-locked pulses coupled into a nonlinear waveguide. The total Q-switched train energy is 10−5 J/mm contained within a Gaussian envelope with 100-nsec full width at half-intensity. The nonlinearity combinations are (a) n2(electronic) = −10−14 and n2eff(thermal)= 0, n2eff(thermal) = 10−13 with (b) n2(electronic) = −10−14, (c) n2(electronic) = −10−15, (d) n2(electronic) = −10−16, and (e) n2(electronic) = 0. All nonlinearities are in units of square meters per watt. The vertical lines identify the individual pulses.

Fig. 22
Fig. 22

Variation in incoupled temporal pulse profile (coupling efficiency) for a pulse energy of 10−5 J/mm, Δt = 10 nsec, and n2 = 10−13 m2/W. The ratios Δt/τ are shown on the curves. The two arrows identify the half-power points on the incident pulse.

Fig. 23
Fig. 23

Variation in incoupled temporal pulse profile (coupling efficiency) for a pulse energy of 10−5 J/mm, τ = 10 nsec, and n2 = 10−13 m2/W. The ratios Δt/τ are shown on the curve S. The two arrows identify the half-power points on the incident pulse.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E ( r , t ) = ½ e ^ in a in ( x , t ) × exp { j [ ω t - n p k 0 ( sin θ x - cos θ z ) ] } + c . c . ,
E ( r , t ) = ½ e ^ gw a gw ( x , t ) f ( z ) × exp { j [ ω t - β ( x , t ) x ] } + c . c .
d d x a gw ( x , t ) = t ^ a in ( x , t ) exp [ j ϕ ( x , t ) ] - [ α gw ( x , t ) 2 + 1 l ] a gw ( x , t ) ,
ϕ ( x , t ) = [ β ( x , - ) - n p k 0 sin θ ] x + ϕ NL ( x , t ) ,
δ n e ( x , z , t ) = - K e N ( x , z , t ) ,
d d t N ( x , z , t ) = σ 1 ω I ( x , z , t ) + σ 2 2 ω I ( x , z , t ) 2 - N ( x , z , t ) τ e ,
δ n t ( x , z , t ) = n t δ T ( x , z , t ) ,
d d t δ T ( x , z , t ) = N ( x , z , t ) τ e p ω ρ C p + α 0 ρ C p I ( x , z , t ) - δ T ( x , z , t ) τ t ,
α = α 0 + α 1 + γ 2 I ( x , z , t ) ,
δ n e ( x , z , t ) = - K e σ 1 τ e ω I ( x , z , t ) ,
n 2 = - K e σ 1 τ e ω .
n 2 = n T α 0 τ t ρ C p ,
n 4 = - K e σ 2 τ e 2 ω .
δ n t ( x , z , t ) = n T 1 ρ C p - t d t α 0 I ( x , z , t ) ,
δ n t ( x , z , t ) = n 2 τ t - t d t I ( x , z , t ) .
n 2 eff n 2 Δ t τ t ,
δ n ( x , z , t ) = n 2 ( 1 photon ) I ( x , z , t ) + n 4 ( 2 photon ) I ( x , z , t ) 2 + n 2 ( thermal ) τ t - t d t I ( x , z , t )
δ n ( x , z , t ) = - t d t { [ n 2 ( 1 photon ) τ e + n 2 ( thermal ) τ t ] × I ( x , z , t ) + n 4 ( 2 photon ) τ e I ( x , z , t ) 2 }
x ϕ NL ( x , t ) = Δ β 1 ( x , t ) + Δ β 2 ( x , t ) + Δ β t ( x , t ) ,
Δ β i ( x , t ) = k 0 Δ ( x , t ) A i ,             i = 1 , 2 , t ,
A 1 = A t = - d z n 2 ( z ) f ( z ) 4 - d z f ( z ) 4 ,
A 2 = - d z n 4 ( z ) f ( z ) 6 - d z f ( z ) 6 .
Δ ( x , t ) = a gw ( x , t ) 2 p ,
Δ ( x , t ) = 1 τ - t d t a gw ( x , t ) 2 p .
Δ β i ( x , t ) = Δ β sat { 1 - exp [ - Δ β i ( x , t ) / Δ β sat ] } ,
α gw ( x , t ) = - d z [ α 0 ( z ) + α 1 ( z ) ] f ( z ) 2 - d z f ( z ) 2 + - d z γ 2 ( z ) f ( z ) 4 - d z f ( z ) 4 a gw ( x , t ) 2 .
η = - d t a gw ( x > x s , t ) 2 E inc ,

Metrics