Abstract

Dispersive optical bistability with a threshold cw input power of approximately 10 mW has been observed in a single-mode fiber-optic ring resonator. Light is coupled in and out of the resonator by a single-mode-fiber variable directional coupler. A fiber-optic Faraday isolator is incorporated into the ring, thus increasing the threshold for stimulated Brillouin oscillation by a factor of 100 and permitting other weaker nonlinear effects such as bistability to be observed. Phase-sensitive amplification and deamplification (squeezing) of classical time-stationary noise is demonstrated and shown to be in agreement with the theory of squeezed-state generation in such a nonlinear fiber ring resonator. Light scattering by elastic eigenmodes of the fiber (guided-acoustic-wave Brillouin scattering, GAWBS) adds noise to light circulating in the resonator and obscures the observation of squeezed quantum fluctuations. The properties of this GAWBS scattering are investigated and compared with theory.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [Crossref]
  2. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [Crossref]
  3. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
    [Crossref] [PubMed]
  4. M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
    [Crossref] [PubMed]
  5. B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
    [Crossref] [PubMed]
  6. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
    [Crossref] [PubMed]
  7. L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
    [Crossref] [PubMed]
  8. R. L. Byer, in Tunable Lasers and Applications (Springer-Verlag, Berlin, 1976), p. 71.
  9. L. A. Lugiato, Progress in Optics XXI (North-Holland, Amsterdam, 1984), p. 71.
  10. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
    [Crossref] [PubMed]
  11. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
    [Crossref]
  12. L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 509 (1982).
    [Crossref] [PubMed]
  13. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
    [Crossref]
  14. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel and H. J. Arditty, eds., Vol. 32 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1982), pp. 400–405.
    [Crossref]
  15. R. A. Berg, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 5, 479 (1980).
    [Crossref]
  16. R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
    [Crossref] [PubMed]
  17. R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
    [Crossref] [PubMed]
  18. M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt. Lett. 10, 514 (1985).
    [Crossref] [PubMed]
  19. M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), Chap. 4.
  20. Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 26.
  21. C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983).
    [Crossref]
  22. M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
    [Crossref] [PubMed]
  23. C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985); B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093 (1985).
    [Crossref] [PubMed]
  24. D. F. Walls, J. Phys. 6A, 496 (1973).
  25. R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
    [Crossref]
  26. H. C. Lefevre, Electron. Lett. 16, 778 (1980).
    [Crossref]
  27. R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
    [Crossref]
  28. K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
    [Crossref]
  29. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [Crossref]

1987 (1)

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

1986 (4)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

1985 (6)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt. Lett. 10, 514 (1985).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985); B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093 (1985).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

1983 (1)

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

1982 (4)

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
[Crossref] [PubMed]

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 509 (1982).
[Crossref] [PubMed]

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

1981 (2)

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
[Crossref]

1980 (3)

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[Crossref]

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
[Crossref]

R. A. Berg, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 5, 479 (1980).
[Crossref]

1973 (2)

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

D. F. Walls, J. Phys. 6A, 496 (1973).

Akimoto, O.

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
[Crossref]

Asaka, S.

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

Aspect, A.

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

Balant, A. C.

D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
[Crossref] [PubMed]

Berg, R. A.

Bergh, R. A.

R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
[Crossref]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel and H. J. Arditty, eds., Vol. 32 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1982), pp. 400–405.
[Crossref]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Byer, R. L.

R. L. Byer, in Tunable Lasers and Applications (Springer-Verlag, Berlin, 1976), p. 71.

Caves, C. M.

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985); B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093 (1985).
[Crossref] [PubMed]

Chodorow, M.

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Daido, H.

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
[Crossref]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Gardiner, C. W.

C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983).
[Crossref]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Grischkowsky, D.

D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

Hall, J. L.

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Hasegawa, A.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Ikeda, K.

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
[Crossref]

Itoh, H.

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

Kimble, H. J.

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Kotler, G.

R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
[Crossref]

Kowalski, F. W.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Lefevre, H. C.

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[Crossref]

R. A. Berg, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 5, 479 (1980).
[Crossref]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel and H. J. Arditty, eds., Vol. 32 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1982), pp. 400–405.
[Crossref]

Levenson, M. D.

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt. Lett. 10, 514 (1985).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
[Crossref] [PubMed]

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), Chap. 4.

Lugiato, L. A.

L. A. Lugiato, Progress in Optics XXI (North-Holland, Amsterdam, 1984), p. 71.

Manley, A. G.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Matsuoka, M.

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Milburn, G. J.

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

Nakatsuka, H.

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

Perlmutter, S. H.

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt. Lett. 10, 514 (1985).
[Crossref] [PubMed]

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Reid, M.

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

Schumaker, B. L.

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985); B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093 (1985).
[Crossref] [PubMed]

Shaw, H. J.

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 509 (1982).
[Crossref] [PubMed]

L. F. Stokes, M. Chodorow, and H. J. Shaw, Opt. Lett. 7, 288 (1982).
[Crossref] [PubMed]

R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
[Crossref]

R. A. Berg, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 5, 479 (1980).
[Crossref]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel and H. J. Arditty, eds., Vol. 32 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1982), pp. 400–405.
[Crossref]

Shelby, R. M.

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Opt. Lett. 10, 514 (1985).
[Crossref] [PubMed]

Shen, Y. R.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 26.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Stokes, L. F.

Tappert, F.

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

D. F. Walls, J. Phys. 6A, 496 (1973).

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

Wood, H.

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Wu, H.

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. G. Manley, and H. Wood, Appl. Phys. B 31, 97 (1981).
[Crossref]

Appl. Phys. Lett. (3)

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1 (1982); W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
[Crossref]

A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973); L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Electron. Lett. (2)

R. A. Bergh, G. Kotler, and H. J. Shaw, Electron. Lett. 17, 243 (1981).
[Crossref]

H. C. Lefevre, Electron. Lett. 16, 778 (1980).
[Crossref]

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, IEEE J. Quantum Electron. QE-18, 626 (1982).
[Crossref]

J. Phys. (1)

D. F. Walls, J. Phys. 6A, 496 (1973).

Opt. Lett. (4)

Phys. Rev. A (3)

R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, and G. J. Milburn, Phys. Rev. A 33, 4008 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, A. Aspect, M. Reid, and D. F. Walls, Phys. Rev. A 32, 1550 (1985).
[Crossref] [PubMed]

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985); B. L. Schumaker and C. M. Caves, Phys. Rev. A 31, 3093 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, Phys. Rev. Lett. 54, 939 (1985); Phys. Rev. B 31, 5244 (1985).
[Crossref] [PubMed]

K. Ikeda, H. Daido, and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980); H. M. Gibbs, F. A. Hopf, D. L. Kaplan, and R. L. Shoemaker, Phys. Rev. Lett. 46, 474 (1981).
[Crossref]

H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, Phys. Rev. Lett. 50, 109 (1983).
[Crossref]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

M. D. Levenson, R. M. Shelby, M. Reid, and D. F. Walls, Phys. Rev. Lett. 57, 2473 (1986).
[Crossref] [PubMed]

B. L. Schumaker, S. H. Perlmutter, R. M. Shelby, and M. D. Levenson, Phys. Rev. Lett. 58, 357 (1987).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, H. Wu, and J. L. Hall, Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Other (6)

R. L. Byer, in Tunable Lasers and Applications (Springer-Verlag, Berlin, 1976), p. 71.

L. A. Lugiato, Progress in Optics XXI (North-Holland, Amsterdam, 1984), p. 71.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, in Fiber Optic Rotation Sensors and Related Technologies, S. Ezekiel and H. J. Arditty, eds., Vol. 32 of Springer Series in Optical Sciences (Springer-Verlag, New York, 1982), pp. 400–405.
[Crossref]

M. D. Levenson, Introduction to Nonlinear Laser Spectroscopy (Academic, New York, 1982), Chap. 4.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 26.

C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Schematic diagram of a fiber-optic ring interferometer. The optical path length around the ring is l. The directional coupler transmits light from port a to port d with efficiency η and from port b to port c with the same efficiency.

Fig. 2
Fig. 2

The experimental apparatus for measuring light scattering and squeezed-state effects in the fiber-optic ring interferometer. The actual interferometer is shown in the lower left of the diagram. The device includes a Faraday rotation isolator, fiber-optic wave plates (λ/2 and λ/4), and a polarizer to suppress stimulated Brillouin oscillation, as well as piezoelectric transducers (P) to facilitate locking the cavity resonance to the laser frequency. The external cavity converts the output pump beam into the LO with phase shift θx. The dc output of the photodiode (D) is measured by the digital voltmeter (DVM), and the ac noise power is recorded by the spectrum analyzer.

Fig. 3
Fig. 3

The circulating power of the ring cavity as a function of the pump phase offset Φ for input intensities well below the bistability threshold. The measured finesse is roughly 100.

Fig. 4
Fig. 4

Stimulated Brillouin suppression. The top traces show the input power variation as a function of time. The middle traces show the circulating power as measured by the light-scattering technique described in the text. The bottom traces show backward-propagating stimulated Brillouin light coupled out of the fiber by the polarizer. (a) The Faraday rotator diode has been optimized and the Brillouin oscillation totally suppressed. (b) The rotation angle has been detuned slightly from 45°. Stimulated Brillouin oscillation is evident in the bottom trace as is the clamping of the circulating power near the SBS threshold.

Fig. 5
Fig. 5

Servo discriminant and circulating pump intensity in the bistability experiments. The pump-frequency component is labeled P and the carrier frequency of the servo beam is labeled S. The servo holds the pump frequency in the region of the double-headed arrow without altering the response of the cavity to changes in pump intensity or small changes in frequency.

Fig. 6
Fig. 6

Circulating pump power (a) and input power (b) as a function of time. The circulating power does not follow the input but rather switches on and off suddenly near the critical powers.

Fig. 7
Fig. 7

Circulating power as a function of input power for the traces shown in Fig. 6. The arrows indicate the direction in which the hysteresis loop was plotted. The irregularity reflects noise and digitization error in the detection of the circulating power.

Fig. 8
Fig. 8

Circulating power and input power as a function of time for a 1-kHz intensity oscillation. The circulating power as measured by the light-scattering method is shown in (a), the input power is shown in (b).

Fig. 9
Fig. 9

Hysteresis loops derived from the data of Fig. 8 by plotting the circulated power versus input power. The arrows indicate the direction of the evolution of the system. The slower time variation causes the transitions between the on and off states to be more vertical on this plot than on Fig. 7.

Fig. 10
Fig. 10

Circulating power and empty-cavity detuning as a function of time. The circulating power in (a) shows the distorted Airy-function line shapes characteristic of bistable interferometers. The detuning is plotted as a function of time in (b).

Fig. 11
Fig. 11

Plot of the circulating power versus detuning showing the hysteresis effect characteristic of optical bistability. The arrows indicate the direction of the evolution of the system. The stable portions of the characteristic are not exactly retraced because of the rapid time variation necessary to avoid the effects of acoustic vibrations.

Fig. 12
Fig. 12

Modulator system used to create classical amplitude and phase modulations that mimic quantum noise. A rf noise source was filtered to produce two independent frequency bands, one of which was then shifted by the frequency of a rf oscillator (OSC) to overlap the other. One noise band drove the electro-optic amplitude modulator (A) and the other drove a phase modulator (ϕ). A vibrating Brewster plate randomized the phase relationship between the pump beam and the modulated beam. When the modulation indices for amplitude and phase modulation were balanced, the noise power did not vary at the frequency of the Brewster-plate oscillation.

Fig. 13
Fig. 13

Squeezing and antisqueezing of classical noise by four-wave mixing in the fiber-optic ring interferometer. The input noise level is taken as unity in these plots. The vertical axes show the inverse of the noise power as measured on the spectrum analyzer; thus deamplification of the input noise causes the level of these plots to rise. The horizontal axes are the noise frequency ΩN and the LO phase θ. The experimental plots in (a) match the theoretical plots derived from Eq. (7) in (b).

Fig. 14
Fig. 14

Deamplification of classical noise for two LO phase shifts and Φ = 0. The maximum deamplification occurs for θ = −0.12π (○) at ΩN = Ωc. The Lorentzian dip has a width of 600 kHz (FWHM). The observed noise power as a function of frequency for θ = −0.3π (×) shows a two-component line shape. The theoretical plots from Eq. (7) are shown as solid lines and agree with the experimental data, which also appear in Fig. 13(a). The experimental uncertainty is equal to the radius of the circles.

Fig. 15
Fig. 15

Phase dependence of the normalized noise level at Φ = 0 and δ = 0 for classical noise input. These data points (○) represent a phase-cut through the three-dimensional plots of Fig. 13. The maximum squeezing is roughly a factor of 6 (reff = 0.7). The solid line is calculated from Eq. (7). The uncertainty in the noise measurement is equal to the radius of the circles.

Fig. 16
Fig. 16

GAWBS showing the phase noise characteristic of the optical fiber used in the resonator (a) and the spectrum of the resonator itself. The phase noise from the resonator appears at the mode frequencies of the resonator, but the strength of the individual lines varies with the scattering strength of the fiber as predicted in Eq. (11). The gap in the traces is due to the servo beam frequency.

Fig. 17
Fig. 17

GAWBS phase noise at the first resonant cavity mode. The observed phase noise spectrum (○) approximates the Lorentzian line shape of the resonance shown as a solid line. The radius of the circles equals the estimated experimental error.

Fig. 18
Fig. 18

Inverse of the normalized noise produced by squeezing quantum noise. The horizontal axes give the LO phase shift and the noise frequency as recorded on the spectrum analyzer. Squeezing the vacuum noise input would raise the quantity plotted. The theoretical plots (b) predict a noise level below the vacuum noise level (V = 1) for frequencies near the center of the first cavity resonance and phase shifts near θ = −3°. The experimental data (a) are in qualitative agreement with theory, but excess noise keeps the actual noise level above the vacuum level. The large excess phase noise due to GAWBS causes the large dips in the plots.

Fig. 19
Fig. 19

Normalized noise level as a function of LO phase for a cut through of the data of Fig. 18, corresponding to Φ = 0 and δ = 0. The input power level was ~18 mW, yielding a predicted squeeze parameter reff = 0.7. The experimental data (○) agree with the theoretical plot from Eq. (12) except near θ = 0, where depolarized GAWBS noise dominates. The vacuum noise level is unity on this plot. The experimental uncertainty of the noise measurements is equal to the radius of the circles.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ I c I c = Δ r c r c = ( log T B / log γ η ) ,
r j = 12 π ω n c f χ ( 3 ) E p j 2 l
r c r a = γ ( 1 - η ) 1 + γ η - 2 γ η cos Φ .
E P d = - γ η E P a [ 1 - γ / η ( 1 - η ) e i Φ 1 - γ η e i Φ ] .
r c r a = ξ [ κ 2 + Φ 2 ] = ξ [ κ 2 + ( 2 π Δ Ω c + r c ) 2 ] ,
J ^ ( + ) ( Ω N ) = E c 4 π ω V Q [ ( a ^ S + a ^ I ) cos θ - i ( a ^ S - a ^ I ) sin θ ] = E c 2 π ω V Q ( X ^ θ = 0 cos θ + X ^ θ = π / 2 sin θ ) ,
V = 1 + 2 r eff ( δ ) sin 2 θ d + 2 r eff 2 ( δ ) ( 1 - cos 2 θ x ) ,
r eff ( δ ) = r c ( 1 - η ) / ( 1 + η - 2 η cos δ ) 2 r c κ κ 2 + δ 2 .
r eff ( 0 ) = r c ( 1 + η 1 - η ) = r a ( 1 + η 1 - η ) 2 r a ( 4 ξ ) 2 ,
V G ( θ , δ , Φ , r c ) = 4 ρ ( δ ) r c κ G ( δ ) 2 [ κ 2 + δ 2 + Φ 2 - ( κ 2 + δ 2 - Φ 2 ) cos 2 θ + 2 κ Φ sin 2 θ ] ,
V G ( θ , δ , 0 , r c ) = ρ ( δ ) κ ( κ 2 + δ 2 ) ( 1 - cos 2 θ x ) .
V = 1 + 2 r eff ( δ ) sin 2 θ x + 2 r eff 2 ( δ ) ( 1 + α ) ( 1 - cos 2 θ x ) ,
α = ρ κ ( 1 + δ 2 / κ 2 ) 8 r c .
V min = 1 + 2 r eff ( δ ) 2 ( 1 + α ) - 2 r eff [ 1 + r eff 2 ( 1 + α ) 2 ] 1 / 2 .

Metrics