Abstract

Dispersive optical bistability with a threshold cw input power of approximately 10 mW has been observed in a single-mode fiber-optic ring resonator. Light is coupled in and out of the resonator by a single-mode-fiber variable directional coupler. A fiber-optic Faraday isolator is incorporated into the ring, thus increasing the threshold for stimulated Brillouin oscillation by a factor of 100 and permitting other weaker nonlinear effects such as bistability to be observed. Phase-sensitive amplification and deamplification (squeezing) of classical time-stationary noise is demonstrated and shown to be in agreement with the theory of squeezed-state generation in such a nonlinear fiber ring resonator. Light scattering by elastic eigenmodes of the fiber (guided-acoustic-wave Brillouin scattering, GAWBS) adds noise to light circulating in the resonator and obscures the observation of squeezed quantum fluctuations. The properties of this GAWBS scattering are investigated and compared with theory.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription