Abstract

Three-wave, second-order parametric processes with pump radiation in the near infrared (λ ≈ 1.5 μm) are investigated to generate tunable mid-infrared radiation in Ti:LiNbO3 channel waveguides. Difference-frequency generation has been obtained by using a tunable color-center laser (1.45 μm < λ < 1.6 μm) as the pump source and a He–Ne laser at λ = 3.39 μm as the idler source. The generated signal radiation is tunable from λ = 2.5 μm to λ =3.0 μm. Besides cw operation, the generation of picosecond pulses has been demonstrated.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger and A. Mooradian, eds., Optical and Laser Remote Sensing, Vol. 39 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1983).
    [CrossRef]
  2. T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18, 1432–1450 (1982).
    [CrossRef]
  3. F. D. Hinkley, K. W. Nill, and F. A. Blum, “Infrared spectroscopy with tunable lasers,” in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed., Vol. 2 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 127–197.
    [CrossRef]
  4. Y. R. Shen, ed., Nonlinear Infrared Generation, Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977).
    [CrossRef]
  5. W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
    [CrossRef]
  6. H. Herrmann, “Difference frequency generation of tunable, coherent mid-infrared radiation (2.5 μ m λ 3.0 μ m) in Ti:LiNbO3channel waveguides,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 194–197.
  7. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  8. K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
    [CrossRef]
  9. N. Uesugi, “Parametric difference frequency generation in a three-dimensional LiNbO3optical waveguide,” Appl. Phys. Lett. 30, 178–180 (1980).
    [CrossRef]
  10. H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
    [CrossRef]
  11. W. Sohler, “Nonlinear integrated optics,” in New Directions in Guided Wave and Coherent Optics, D. B. Ostrowsky and E. Spitz, eds., No. 79 of NATO ASI Series E (NATO, The Hague, 1984), Vol. II, pp. 449–479.
  12. R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
    [CrossRef]
  13. O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.
  14. S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
    [CrossRef]
  15. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [CrossRef]
  16. L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
    [CrossRef]
  17. A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
    [CrossRef]
  18. H. Suche, R. Ricken, and W. Sohler, “Integrated optical parametric oscillator of low threshold and high power conversion efficiency,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 201–206.

1986 (1)

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

1985 (2)

R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1983 (1)

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
[CrossRef]

1982 (2)

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18, 1432–1450 (1982).
[CrossRef]

1980 (1)

N. Uesugi, “Parametric difference frequency generation in a three-dimensional LiNbO3optical waveguide,” Appl. Phys. Lett. 30, 178–180 (1980).
[CrossRef]

1978 (1)

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

1966 (1)

K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
[CrossRef]

Alferness, R. C.

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

Becker, R. A.

R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
[CrossRef]

Blum, F. A.

F. D. Hinkley, K. W. Nill, and F. A. Blum, “Infrared spectroscopy with tunable lasers,” in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed., Vol. 2 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 127–197.
[CrossRef]

Buhl, L. L.

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

Bulmer, C. H.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

Burns, W. K.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

Divino, M. D.

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Eknoyan, O.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

Hampel, B.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
[CrossRef]

Herrmann, H.

H. Herrmann, “Difference frequency generation of tunable, coherent mid-infrared radiation (2.5 μ m λ 3.0 μ m) in Ti:LiNbO3channel waveguides,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 194–197.

Hinkley, F. D.

F. D. Hinkley, K. W. Nill, and F. A. Blum, “Infrared spectroscopy with tunable lasers,” in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed., Vol. 2 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 127–197.
[CrossRef]

Kaiser, W.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Korotky, S. K.

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

Laubereau, A.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Levin, K. H.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

Levingstein, H. J.

K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
[CrossRef]

Lind, T. A.

R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
[CrossRef]

Loiacano, G. M.

K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
[CrossRef]

Manabe, T.

T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18, 1432–1450 (1982).
[CrossRef]

Minford, W. J.

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

Miyashita, T.

T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18, 1432–1450 (1982).
[CrossRef]

Moeller, R. P.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

Mollenauer, L. F.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
[CrossRef]

Nassau, K.

K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
[CrossRef]

Nill, K. W.

F. D. Hinkley, K. W. Nill, and F. A. Blum, “Infrared spectroscopy with tunable lasers,” in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed., Vol. 2 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 127–197.
[CrossRef]

Rediker, R. H.

R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
[CrossRef]

Regener, R.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Ricken, R.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

H. Suche, R. Ricken, and W. Sohler, “Integrated optical parametric oscillator of low threshold and high power conversion efficiency,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 201–206.

Seibert, H.

H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
[CrossRef]

Seilmeier, A.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Sohler, W.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

H. Suche, R. Ricken, and W. Sohler, “Integrated optical parametric oscillator of low threshold and high power conversion efficiency,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 201–206.

H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
[CrossRef]

W. Sohler, “Nonlinear integrated optics,” in New Directions in Guided Wave and Coherent Optics, D. B. Ostrowsky and E. Spitz, eds., No. 79 of NATO ASI Series E (NATO, The Hague, 1984), Vol. II, pp. 449–479.

Spanner, K.

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Suche, H.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
[CrossRef]

H. Suche, R. Ricken, and W. Sohler, “Integrated optical parametric oscillator of low threshold and high power conversion efficiency,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 201–206.

Szeto, L.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
[CrossRef]

Uesugi, N.

N. Uesugi, “Parametric difference frequency generation in a three-dimensional LiNbO3optical waveguide,” Appl. Phys. Lett. 30, 178–180 (1980).
[CrossRef]

Vieira, N. D.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
[CrossRef]

Volk, R.

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

R. A. Becker, R. H. Rediker, and T. A. Lind, “Wide-bandwidth guided-wave electrooptic modulator at λ = 3.39 μ m,” Appl. Phys. Lett. 46, 809–811 (1985).
[CrossRef]

N. Uesugi, “Parametric difference frequency generation in a three-dimensional LiNbO3optical waveguide,” Appl. Phys. Lett. 30, 178–180 (1980).
[CrossRef]

IEEE J. Lightwave Technol. (1)

W. Sohler, B. Hampel, R. Regener, R. Ricken, H. Suche, and R. Volk, “Integrated optical parametric devices,” IEEE J. Lightwave Technol. LT-4, 772–777 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Miyashita and T. Manabe, “Infrared optical fibers,” IEEE J. Quantum Electron. QE-18, 1432–1450 (1982).
[CrossRef]

S. K. Korotky, W. J. Minford, L. L. Buhl, M. D. Divino, and R. C. Alferness, “Mode size and method for estimating the propagation constant of single-mode Ti:LiNbO3strip waveguides,” IEEE J. Quantum Electron.,  QE-18, 1796–1801 (1982).
[CrossRef]

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levingstein, and G. M. Loiacano, “Ferroelectric lithium niobate. 2. Preparation of single domain crystals,” J. Phys. Chem. Solids 27, 989–996 (1966).
[CrossRef]

Opt. Commun. (1)

A. Seilmeier, K. Spanner, A. Laubereau, and W. Kaiser, “Narrow-band tunable infrared pulses with sub-picosecond time resolution,” Opt. Commun. 24, 237–242 (1978).
[CrossRef]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. B (1)

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B 27, 5332–5346 (1983).
[CrossRef]

Other (8)

H. Suche, R. Ricken, and W. Sohler, “Integrated optical parametric oscillator of low threshold and high power conversion efficiency,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 201–206.

O. Eknoyan, C. H. Bulmer, R. P. Moeller, W. K. Burns, and K. H. Levin, “Guided-wave electrooptic modulator at λ = 2.6 μ m,” presented at Third European Conference on Integrated Optics, Berlin, May 1985; postdeadline contribution.

D. K. Killinger and A. Mooradian, eds., Optical and Laser Remote Sensing, Vol. 39 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 1983).
[CrossRef]

H. Suche, B. Hampel, H. Seibert, and W. Sohler, “Parametric fluorescence, amplification and oscillation in Ti:LiNbO3optical waveguides,” in Integrated Optical Circuit Engineering II, S. Sriram, ed., Proc. Soc. Photo-Opt. Instrum. Eng.578, 158–163 (1985).
[CrossRef]

W. Sohler, “Nonlinear integrated optics,” in New Directions in Guided Wave and Coherent Optics, D. B. Ostrowsky and E. Spitz, eds., No. 79 of NATO ASI Series E (NATO, The Hague, 1984), Vol. II, pp. 449–479.

F. D. Hinkley, K. W. Nill, and F. A. Blum, “Infrared spectroscopy with tunable lasers,” in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed., Vol. 2 of Topics in Applied Physics (Springer-Verlag, Berlin, 1976), pp. 127–197.
[CrossRef]

Y. R. Shen, ed., Nonlinear Infrared Generation, Vol. 16 of Topics in Applied Physics (Springer-Verlag, Berlin, 1977).
[CrossRef]

H. Herrmann, “Difference frequency generation of tunable, coherent mid-infrared radiation (2.5 μ m λ 3.0 μ m) in Ti:LiNbO3channel waveguides,” in Proceedings of the Fourth European Conference on Integrated Optics, C. D. W. Wilkinson and J. Lamb, eds. (SETG, Glasgow, 1987), pp. 194–197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated tuning curves for three-wave, nonlinear parametric interaction in bulk LiNbO3 as signal and idler wavelengths versus pump wavelength (parameter: crystal temperature).

Fig. 2
Fig. 2

Enlarged section of Fig. 1: tuning curves for pump waves of wavelengths from 1.4 to 1.7 μm. The wavelength of the difference-frequency radiation obtained using a He–Ne laser at λ = 3.39 μm (dashed horizontal line) is shown by dots within the tuning range of the CCL.

Fig. 3
Fig. 3

Fabry–Perot-contrast method15: transmitted power (λ = 3.39 μm) versus temperature obtained in a 30-μm-wide waveguide.

Fig. 4
Fig. 4

Setup of the synchronously pumped CCL. Inset: laser output power versus wavelength at a pump power of 3 W with 10 and 20% output coupling rates, respectively.

Fig. 5
Fig. 5

Experimental setup: Ch, chopper; Si, Si plate; L1–L3, lenses; M, mirror; F, Ge plate; Det, PbS detector.

Fig. 6
Fig. 6

Experimentally generated signal power versus pump wavelength.

Fig. 7
Fig. 7

Wavelength of the signal radiation versus temperature. Comparison of experimental and calculated results (see text).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ω s = ω p - ω i ,
Δ β = β p - β s - β i 0 ,
P s = γ 2 P i 0 sinh 2 ( g l ) ,
P i = P i 0 cosh 2 ( g l ) .
g = π d 31 κ ( 8 P p 0 3 n i n s n p c λ s λ i ) 1 / 2 ,
κ = E s ( x , y ) E i ( x , y ) E p ( x , y ) d x d y [ E s 2 ( x , y ) d x d y E i 2 ( x , y ) d x d y E p 2 ( x , y ) d x d y ] 1 / 2 .
P s P i 0 g 2 l 2 .
g 2 κ 2 λ s λ i P p .
P s ½ P i 0 exp ( g l ) .

Metrics