Abstract

We describe a photothermal technique for wavelength modulation of a room-temperature diode laser at modulation frequencies up to a few kilohertz. This photothermal modulation is accomplished by exposing the diode laser to a low-power, amplitude-modulated helium–neon-laser beam. Advantages of photothermal wavelength modulation compared with the typical injection-current wavelength modulation are discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Camparo, Contemp. Phys. 26, 443 (1985); Rev. Sci. Instrum. 57, 370 (1986).
    [CrossRef]
  2. E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed. (Springer-Verlag, New York, 1976).
  3. A. Dandridge, L. Goldberg, Electron. Lett. 18, 302 (1982).
    [CrossRef]
  4. P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
    [CrossRef]
  5. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
    [CrossRef]
  6. W. Lenth, Opt. Lett. 8, 575 (1983); IEEE J. Quantum Electron. QE-20, 1045 (1984).
    [CrossRef] [PubMed]
  7. R. S. Eng, A. W. Mantz, T. R. Todd, Appl. Opt. 18, 3438 (1979).
    [CrossRef] [PubMed]
  8. A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
    [CrossRef]
  9. O. Fujita, J. Appl. Phys. 57, 978 (1985).
    [CrossRef]
  10. M. Cardona, in Proceedings of the International Conference on Semiconductor Physics, Prague (Academic, New York, 1960), pp. 388–394.
  11. M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-17, 787 (1981).
    [CrossRef]
  12. R. D. Esman, D. L. Rode, J. Appl. Phys. 59, 407 (1986).
    [CrossRef]
  13. T. L. Paoli, IEEE J. Quantum Electron. QE-11, 498 (1975).
    [CrossRef]
  14. C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
    [CrossRef]
  15. J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
    [CrossRef]

1986 (1)

R. D. Esman, D. L. Rode, J. Appl. Phys. 59, 407 (1986).
[CrossRef]

1985 (2)

O. Fujita, J. Appl. Phys. 57, 978 (1985).
[CrossRef]

J. C. Camparo, Contemp. Phys. 26, 443 (1985); Rev. Sci. Instrum. 57, 370 (1986).
[CrossRef]

1984 (1)

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

1983 (2)

W. Lenth, Opt. Lett. 8, 575 (1983); IEEE J. Quantum Electron. QE-20, 1045 (1984).
[CrossRef] [PubMed]

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

1982 (2)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

A. Dandridge, L. Goldberg, Electron. Lett. 18, 302 (1982).
[CrossRef]

1981 (1)

M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-17, 787 (1981).
[CrossRef]

1980 (1)

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

1979 (1)

1975 (1)

T. L. Paoli, IEEE J. Quantum Electron. QE-11, 498 (1975).
[CrossRef]

1966 (1)

J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
[CrossRef]

Badoz, J.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Bjorklund, G. C.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

Blum, F. A.

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed. (Springer-Verlag, New York, 1976).

Boccara, A. C.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Camparo, J. C.

J. C. Camparo, Contemp. Phys. 26, 443 (1985); Rev. Sci. Instrum. 57, 370 (1986).
[CrossRef]

Cardona, M.

M. Cardona, in Proceedings of the International Conference on Semiconductor Physics, Prague (Academic, New York, 1960), pp. 388–394.

Chu, F.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

Dandridge, A.

A. Dandridge, L. Goldberg, Electron. Lett. 18, 302 (1982).
[CrossRef]

Eng, R. S.

Esman, R. D.

R. D. Esman, D. L. Rode, J. Appl. Phys. 59, 407 (1986).
[CrossRef]

Fournier, D.

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

Fujita, O.

O. Fujita, J. Appl. Phys. 57, 978 (1985).
[CrossRef]

Goldberg, L.

A. Dandridge, L. Goldberg, Electron. Lett. 18, 302 (1982).
[CrossRef]

Hinkley, E. D.

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed. (Springer-Verlag, New York, 1976).

Ito, M.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-17, 787 (1981).
[CrossRef]

Kimura, T.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-17, 787 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Lenth, W.

Manning, J.

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

Mantz, A. W.

Nill, K. W.

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed. (Springer-Verlag, New York, 1976).

Olshansky, R.

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

Paoli, T. L.

T. L. Paoli, IEEE J. Quantum Electron. QE-11, 498 (1975).
[CrossRef]

Pokrowsky, P.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

Powazinik, W.

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

Pratt, G. W.

J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
[CrossRef]

Ripper, J. E.

J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
[CrossRef]

Rode, D. L.

R. D. Esman, D. L. Rode, J. Appl. Phys. 59, 407 (1986).
[CrossRef]

Su, C. B.

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

Todd, T. R.

Whitney, C. G.

J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
[CrossRef]

Yamamoto, Y.

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

Zapka, W.

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. C. Boccara, D. Fournier, J. Badoz, Appl. Phys. Lett. 36, 130 (1980).
[CrossRef]

C. B. Su, R. Olshansky, J. Manning, W. Powazinik, Appl. Phys. Lett. 44, 1030 (1984).
[CrossRef]

Contemp. Phys. (1)

J. C. Camparo, Contemp. Phys. 26, 443 (1985); Rev. Sci. Instrum. 57, 370 (1986).
[CrossRef]

Electron. Lett. (1)

A. Dandridge, L. Goldberg, Electron. Lett. 18, 302 (1982).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-18, 582 (1982).
[CrossRef]

T. L. Paoli, IEEE J. Quantum Electron. QE-11, 498 (1975).
[CrossRef]

J. E. Ripper, G. W. Pratt, C. G. Whitney, IEEE J. Quantum Electron. QE-2, 603 (1966); P. A. Greenhalgh, P. A. Davies, Electron. Lett. 21, 247 (1985).
[CrossRef]

M. Ito, T. Kimura, IEEE J. Quantum Electron. QE-17, 787 (1981).
[CrossRef]

J. Appl. Phys. (2)

R. D. Esman, D. L. Rode, J. Appl. Phys. 59, 407 (1986).
[CrossRef]

O. Fujita, J. Appl. Phys. 57, 978 (1985).
[CrossRef]

Opt. Commun. (1)

P. Pokrowsky, W. Zapka, F. Chu, G. C. Bjorklund, Opt. Commun. 44, 175 (1983).
[CrossRef]

Opt. Lett. (1)

Other (2)

M. Cardona, in Proceedings of the International Conference on Semiconductor Physics, Prague (Academic, New York, 1960), pp. 388–394.

E. D. Hinkley, K. W. Nill, F. A. Blum, in Laser Spectroscopy of Atoms and Molecules, H. Walther, ed. (Springer-Verlag, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic experimental arrangement for employing photothermal wavelength modulation. The chopped output from a helium–neon laser impinges upon the semiconductor material of a commercial diode laser. Absorption of the helium–neon laser light heats the diode laser and causes the wavelength to shift. Modulation of the diode-laser wavelength can then be used in conjunction with phase-sensitive detection to obtain derivative-type spectra of atomic or molecular resonances.

Fig. 2
Fig. 2

(a) Spectrum of the rubidium D2 transition without photothermal wavelength modulation. Resonances i and iv correspond to the 52S1/2(F = 2)–52P3/2 and 52S1/2(F = 1)–52P3/2 transitions in 87Rb, respectively, while resonances ii and iii correspond to the 52S1/2(F = 3)–52P3/2 and 52S1/2(F = 2)–52P3/2 transition in 85Rb, respectively. (b) The same spectrum as in (a) except that photothermal wavelength modulation was employed. Note that the derivative-type spectrum permits relatively easy location of resonance line centers.

Fig. 3
Fig. 3

Modulation depth versus modulation frequency for a VSIS structure (Sharp LT-026 MD) diode laser. Circles correspond to experimental data for a helium–neon output power of 2 mW, and the solid curve is a fit to the data using the theory presented in the text with a thermal time constant of 325 μsec and a maximum modulation depth of 425 MHz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d T d t = 1 τ [ S R - ( T - T s ) ] ,
T ( t ) = θ sin ( ω t + β ) + [ T s + f R ( 1 - r ) P 0 / 2 ] ,
θ = f R ( 1 - r ) P 0 2 [ 1 + ( ω τ ) 2 ] 1 / 2 ,
β = - tan - 1 ( ω τ ) .
δ ν ( t ) = - [ a ν 0 f R ( 1 - r ) P 0 2 n ] { 1 + sin ( ω t + β ) [ 1 + ( ω τ ) 2 ] 1 / 2 } ,
δ ν m = a ν 0 f R ( 1 - r ) P 0 [ 1 + ( ω τ ) 2 ] 1 / 2 .
= δ P ( injection current ) δ P ( photothermal ) = T 0 I th ( T I ) - 1 ,

Metrics