Abstract

We identify a considerable improvement in proposed schemes for isotopic depletion of zirconium-91 on the basis of the atomic vapor laser isotope separation (AVLIS) method. The improvement lies in applying a single-longitudinal-mode dye laser for selective excitation of all hyperfine split levels of the ground state of zirconium-91. High-resolution laser-induced fluorescence spectroscopy of atomic beams of zirconium produced through laser vaporization–supersonic expansion has been used to identify transitions of zirconium with suitable hyperfine structure. Casimir magnetic-dipole and electric-quadrupole coupling constants and isotope shifts have been derived and are reported for five excited configurations. Suitable intermediate levels in a multistep resonance ionization pathway have been identified by two-color resonance ionization spectroscopy. Isotope depletion has been demonstrated on one ground-state-transition ( zF33aF32at 593.7 nm) by using a specially constructed pulsed, single-longitudinal-mode dye-laser oscillator. Prospects and future directions in zirconium AVLIS are discussed.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
    [CrossRef]
  2. M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
    [CrossRef]
  3. O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
    [CrossRef]
  4. S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
    [CrossRef]
  5. M. G. Littman, Appl. Opt. 23, 4465 (1984).
    [CrossRef] [PubMed]
  6. O. L. Bourne and D. M. Rayner, Opt. Commun. 64, 461 (1987).
    [CrossRef]
  7. R. Wallenstein and T. W. Hänsch, Appl. Opt. 13, 1625 (1974).
    [CrossRef] [PubMed]
  8. P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
    [CrossRef]
  9. H. G. Kuhn, Atomic Spectra, 2nd ed. (Longman, London, 1969), p. 351.
  10. C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol.  II (1952).
  11. G. Chevalier, J.-M. Gagné, and P. Pianorosa, J. Opt. Soc. Am. B 5, 1492 (1988).
    [CrossRef]
  12. G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
    [CrossRef]

1988 (1)

1987 (2)

G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
[CrossRef]

O. L. Bourne and D. M. Rayner, Opt. Commun. 64, 461 (1987).
[CrossRef]

1986 (2)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

1985 (1)

M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

1984 (2)

J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
[CrossRef]

M. G. Littman, Appl. Opt. 23, 4465 (1984).
[CrossRef] [PubMed]

1978 (1)

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

1974 (1)

1952 (1)

C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol.  II (1952).

Bourne, O. L.

O. L. Bourne and D. M. Rayner, Opt. Commun. 64, 461 (1987).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Büttgenbach, S.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Chevalier, G.

G. Chevalier, J.-M. Gagné, and P. Pianorosa, J. Opt. Soc. Am. B 5, 1492 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
[CrossRef]

Davis, J. I.

J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
[CrossRef]

Dicke, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Emmett, J. L.

J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
[CrossRef]

Gagné, J.-M.

G. Chevalier, J.-M. Gagné, and P. Pianorosa, J. Opt. Soc. Am. B 5, 1492 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
[CrossRef]

Gebauer, H.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Hackett, P. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Hänsch, T. W.

Humphries, M. R.

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

Krupke, W. F.

J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
[CrossRef]

Kuhn, H. G.

H. G. Kuhn, Atomic Spectra, 2nd ed. (Longman, London, 1969), p. 351.

Kuhnen, R.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Littman, M. G.

Mitchell, S. A.

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol.  II (1952).

Pianorosa, P.

G. Chevalier, J.-M. Gagné, and P. Pianorosa, J. Opt. Soc. Am. B 5, 1492 (1988).
[CrossRef]

G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
[CrossRef]

Rayner, D. M.

O. L. Bourne and D. M. Rayner, Opt. Commun. 64, 461 (1987).
[CrossRef]

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

Träber, F.

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Wallenstein, R.

Appl. Opt. (2)

Atomic Energy Levels (1)

C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.) Circ. 467, Vol.  II (1952).

Chem. Phys. Lett. (1)

M. R. Humphries, O. L. Bourne, and P. A. Hackett, Chem. Phys. Lett. 118, 134 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. L. Emmett, W. F. Krupke, and J. I. Davis, IEEE J. Quantum Electron. QE-20, 591 (1984).
[CrossRef]

J. Chem. Phys. (1)

P. A. Hackett, M. R. Humphries, S. A. Mitchell, and D. M. Rayner, J. Chem. Phys. 85, 3194 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

G. Chevalier, J.-M. Gagné, and P. Pianorosa, Opt. Commun. 64, 127 (1987).
[CrossRef]

O. L. Bourne, M. R. Humphries, S. A. Mitchell, and P. A. Hackett, Opt. Commun. 56, 403 (1986).
[CrossRef]

O. L. Bourne and D. M. Rayner, Opt. Commun. 64, 461 (1987).
[CrossRef]

Z. Phys. A (1)

S. Büttgenbach, R. Dicke, H. Gebauer, R. Kuhnen, and F. Träber, Z. Phys. A 286, 125 (1978).
[CrossRef]

Other (1)

H. G. Kuhn, Atomic Spectra, 2nd ed. (Longman, London, 1969), p. 351.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Doppler-free fluorescence spectrum of the transition z F 3 3 a F 3 2 of ground-state zirconium atoms at 613.6 nm. The even-isotope peaks and five peaks arising from the hyperfine transition in 91Zr are clearly resolved. Note that the hyperfine splitting is small for the upper state of this transition, with the consequence that transitions from individual hyperfine levels of the ground state are removed from one another.

Fig. 2
Fig. 2

Doppler-free fluorescence spectrum of the transition z F 3 2 a F 3 2 of ground-state zirconium atoms at 593.7 nm. The hyperfine transitions of 91Zr are labeled by the hyperfine quantum numbers of their lower levels. Note that for this transition the hyperfine splitting in the upper state is reasonably large, with the consequence that transitions from individual hyperfine levels of the ground state lie within reasonable proximity to one another. Contrast this with the situation revealed in Fig. 1.

Fig. 3
Fig. 3

Energy-level diagram of the z F 3 3 a F 3 2 transition in zirconium, illustrating the isotope and hyperfine shifts. All the transitions listed in Table 1 exhibit a similar structure. The Δλij are measured for peaks assigned in the spectra. The scale factor S, the excited-state hyperfine constants Ae and Be, and the isotope shift Δ91 are calculated by fitting the spectra to the known ground-state hyperfine shifts Δgi and known coefficients aj and bj (see Ref. 9).

Fig. 4
Fig. 4

Energy-level diagram of resonances in zirconium discovered by two-color ionization. The transitions, all in vacuum wavelengths, from z F 3 3 , z D 3 3 , and z D 3 2 would be the second steps in possible photoionization schemes. The long-wavelength limits for the ionizing steps in such schemes are indicated for three of the resonances. The energy levels are indicated in inverse centimeters. Six of the resonances found from z D 3 3 lie at a, 35 860 cm−1; b, 36 331 and 36 344 cm−1; c, 36 916 cm−1; and d, 36 973 and 36 982 cm1.

Fig. 5
Fig. 5

Mass spectra obtained by two-color resonance-enhanced multiphoton ionization of zirconium atoms. The first laser wavelength was 593.7 nm to pump the z F 3 3 a F 3 2 resonance. A second laser tuned to a resonance from the z F 3 3 level at 544.5 nm provides two photons to ionize. (a) The first laser ran multimode. (b) The first laser operated on a SLM. The vertical scale of (b) has been expanded by a factor of 2.

Fig. 6
Fig. 6

Frequency dependence of the isotopic selectivity, 91α (see text), is shown as the solid curve in the upper panel. The points show the intensity of the 90Zr ionization peak and require the right-hand ordinate. Smoothing the points by a three-point average (weighted 1:2:1) yields the dashed curve. Similar smoothing was applied to the ionization intensities of the other isotopes. Selectivity was calculated [Eq. (1)] from the smoothed data. The lower panel shows a stick representation (logarithmic ordinate) of the high-resolution spectrum shown in Fig. 2. The abscissa for the upper panel, originally SLM cavity nitrogen pressure (see text), has been scaled by comparison of the positions of even-isotope peaks with those in the lower panel (thicker lines).

Tables (3)

Tables Icon

Table 1 Optical Transitions from the Zirconium Ground States Accessible to Copper-Vapor-Laser-Pumped Dye Lasers

Tables Icon

Table 2 Hyperfine Constants of 91Zr

Tables Icon

Table 3 Isotope Shifts in Zirconium Transitions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α 91 = [ I 91 / ( I - I 91 ) ] λ [ f 91 / ( 1 - f 91 ) ] natural ,

Metrics