Abstract

Nonlinear-optical properties of Fluorescein-doped boric acid glass are investigated. By considering a linearly polarized pumping field we were able to obtain a complete expression of the dielectric susceptibility tensor. Utilizing a heterodyne detection polarimeter, we characterized the material at λ = 457.9, 476.5, and 632.8 nm. Large values of the nonlinear susceptibility are observed as well as considerable light-induced changes of the absolute values of the dielectric response. As an example, at λ = 457.9 nm and for a sample thickness d = 100 μm, a concentration C = 1.5 × 10−3 M, and an incident intensity I = 100 mW/cm2, the induced dichroism is Δα/α = 30%, and the birefringence is Δn/n = 3.2 × 10−4.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, “Recording holograms in luminescent materials,” Appl. Opt. 8, 2282–2284 (1969).
    [CrossRef] [PubMed]
  2. Y. Silberberg, I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
    [CrossRef]
  3. H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film by degenerate four-wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
    [CrossRef]
  4. G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
    [CrossRef]
  5. M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
    [CrossRef] [PubMed]
  6. A. Yariv, ed., Quantum Electronics, 2nd ed. (Wiley, New York, 1975), pp. 149–155.
  7. T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
    [CrossRef]

1986 (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

1985 (1)

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film by degenerate four-wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

1981 (2)

Y. Silberberg, I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

1969 (1)

1941 (1)

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Bar-Joseph, I.

Y. Silberberg, I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

Boyd, R. W.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

Dragostinova, V.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

Fujiwara, H.

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film by degenerate four-wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Kramer, M. A.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

Lewis, G. N.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Lipkin, D.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Magel, T. T.

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Nakagawa, K.

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film by degenerate four-wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Nikolova, L.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

Shankoff, T. A.

Silberberg, Y.

Y. Silberberg, I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

Todorov, T.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

Tomova, N.

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

Tompkin, W. R.

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Am. Chem. Soc. (1)

G. N. Lewis, D. Lipkin, T. T. Magel, “Reversible photochemical processes in rigid media. A study of the phosphorescent state,” J. Am. Chem. Soc. 63, 3005–3018 (1941).
[CrossRef]

Opt. Commun. (2)

Y. Silberberg, I. Bar-Joseph, “Low power phase conjugation in thin films of saturable absorbers,” Opt. Commun. 39, 265–268 (1981).
[CrossRef]

H. Fujiwara, K. Nakagawa, “Phase conjugation in fluorescein film by degenerate four-wave mixing and holographic process,” Opt. Commun. 55, 386–390 (1985).
[CrossRef]

Opt. Quantum Electron. (1)

T. Todorov, L. Nikolova, N. Tomova, V. Dragostinova, “Photochromism and dynamic holographic recording in a acid solution of Fluorescein,” Opt. Quantum Electron. 13, 209–214 (1981).
[CrossRef]

Phys. Rev. A (1)

M. A. Kramer, W. R. Tompkin, R. W. Boyd, “Nonlinear-optical interactions in Fluorescein-doped boric acid glass,” Phys. Rev. A 34, 2026–2031 (1986).
[CrossRef] [PubMed]

Other (1)

A. Yariv, ed., Quantum Electronics, 2nd ed. (Wiley, New York, 1975), pp. 149–155.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simplified diagram of Fluorescein molecule energy level and its main transitions. Selection rules forbid radiative transitions between singlet and triplet states. Because of its long lifetime, T0 acts as a trap state.

Fig. 2
Fig. 2

Experimental setup: BS’s, beam splitters; S, sample; P’s, polarizers; VA, variable attenuator; AOM, acousto-optic modulator; D’s, photodiodes; S.O., sampling oscilloscope; V.V., vector voltmeter; PM, power meter; λ/2’s, half-wave plates.

Fig. 3
Fig. 3

(a) Transmission of a probe polarized along (Tz) and orthogonally (Tx) to the pump and (b) phase difference versus intensity I at λPUMP = λPROBE = 457.9 nm. The estimated parameters are summarized in Table 1 assuming that n ~ 1.47.

Fig. 4
Fig. 4

Same as Fig. 3 but λPUMP = λPROBE = 476.5 nm.

Fig. 5
Fig. 5

Same as Fig. 3 but λPUMP = 457.9 nm and λPROBE = 632.8 nm.

Fig. 6
Fig. 6

Natural logarithm of the normalized intensity of fluorescence. The pump is turned off at t = 0 sec. The abrupt drop in fluorescence at t = 0 is due to the exhaustion of the fast transition T1 → T0. Afterward, the signal decreases more slowly but not uniformly: τhot ~ 4.5 × 10−1, whereas τcold ~ 2 sec.

Tables (1)

Tables Icon

Table 1 Saturation Intensities and Dielectric Susceptibilities (in mks units) of Na Fluorescein-Doped Boric Acid Glass

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

d χ μ μ Sing ( ω ) = d Ω / 4 π [ 1 + I / I S ( ω ) cos 2 α ] - 1 χ Sing ( 1 ) ( ω ) ,
I S ( ω ) = 2 c 0 h 2 [ 1 + ( ω + ω S ) 2 T 2 2 ] / ( Q τ T 2 μ S 2 ) = h ω / [ Q σ S ( ω ) τ ]
χ Sing ( 1 ) ( ω ) = μ S 2 T 2 N 0 / ( 0 h ) { ( ω S - ω ) T 2 / [ 1 + ( ω - ω S ) 2 T 2 2 ] - i / ( 1 + ( ω - ω S ) 2 T 2 2 ) }
d χ μ μ Sing ( ω ) = ( d Ω / 4 π ) [ I / I S ( ω ) ] cos 2 α / [ 1 + I / I S ( ω ) cos 2 α ] χ Trip ( 1 ) ( ω ) ,
d χ μ μ ( ω ) = d χ μ μ Sing ( ω ) + d χ μ μ Trip ( ω ) = d Ω / 4 π ( { 1 + [ I / I S ( ω ) ] cos 2 α } - 1 χ Sing ( 1 ) ( ω ) + [ I / I S ( ω ) ] cos 2 α / { 1 + [ I / I S ( ω ) ] cos 2 α } χ Trip ( 1 ) ( ω ) ) .
χ i j = 1 / ( 4 π ) 4 π d χ μ μ cos α μ j cos α μ i ,
a = I / I S ( ω ) ,             χ Sing R = Re { χ Sing R } , χ Sing I = Im [ χ Sing ( 1 ) ] ,             χ Trip R = Re [ χ Trip ( 1 ) ] , χ Trip I = Im [ χ ( 1 ) Trip ] ,             p = χ Trip R / χ Sing R , q = χ Trip I / χ Sing I ,
χ z z = [ χ Sing ( 1 ) / 3 ] f ( a ) + [ χ Trip ( 1 ) / 3 ] [ 1 - f ( a ) ] = [ χ Sing R / 3 ] [ f ( a ) ( 1 - p ) + p ] + i [ χ Sing I / 3 ] [ f ( a ) ( 1 - q ) + q ] ,
χ x x = χ y y = [ χ Sing ( 1 ) / 3 ] g ( a ) + [ χ Sing ( 1 ) / 3 ] [ 1 - g ( a ) ] = [ χ Sing R / ] 3 [ g ( a ) ( 1 - p ) + p ] + i [ χ Sing I / 3 [ g ( a ) ( 1 - q ) + q ] ,
f ( a ) = ( 3 / a ) [ 1 - arctan ( a ) 1 / 2 / ( a ) 1 / 2 - ( a ) 1 / 2 ] ,
g ( a ) = ( 3 / 2 ) [ ( 1 + 1 / a ) arctan ( a ) 1 / 2 / ( a ) 1 / 2 - 1 / a ]
χ z z = [ χ Sing R / 3 ] [ 1 - ( 3 / 5 ) a ( 1 - p ) ] + i [ χ Sing I / 3 ] [ 1 - ( 3 / 5 ) a ( 1 - q ) ]
χ x x = χ y y = [ χ Sing R / 3 ] [ 1 - ( a / 5 ) ( 1 - p ) ] + i [ χ Sing I / 3 ] [ 1 - ( a / 5 ) ( 1 - q ) ] .
d E P ( y ) / d y = - i ω / ( 2 n c ) χ z z ( E P 2 ) E P ( y ) .
d a / d ξ = - a [ f ( a ) ( 1 - q ) + q ] α 0 ,
d α z / d ξ = α 0 / 2 [ f ( a ) ( 1 - q ) + q ] ,
d β z / d ξ = - β 0 [ f ( a ) ( 1 - p ) + p ] ,
d α x / d ξ = α 0 / 2 [ g ( a ) ( 1 - q ) + q ] ,
d β x / d ξ = - β 0 [ g ( a ) ( 1 - p ) + p ] ,
d Δ β / d ξ = - β 0 ( 1 - p ) [ f ( a ) - g ( a ) ] .

Metrics