Abstract

The indices of refraction, thermal variations of refractive indices, and thermal expansion coefficients were measured for the gadolinium garnets Gd3Sc2Ga3O12 (GSGG) and Gd3Sc2Al3O12 The variation of these properties with trivalent chromium doping was investigated for GSGG. The refractive indices were determined by the minimum-deviation technique, with indices fitted to a five-parameter Sellmeier formula. The thermal coefficients were measured by an interferometric technique using simultaneous Twyman–Green and Fizeau interferometry.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Brandle, J. C. Vanderleeden, “Growth, optical properties, and cw laser action of neodymium-doped gadolinium scandium aluminum garnet,” IEEE J. Quantum Electron. QE-10, 67–71 (1974).
    [CrossRef]
  2. A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
    [CrossRef]
  3. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).
  4. J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
    [CrossRef]
  5. Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
    [CrossRef]
  6. E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), Vol. 52, pp. 282–290.
    [CrossRef]
  7. F. J. Bruni, “Exploratory crystal growth of laser host oxide crystals,” Interim Rep. (Material Progress Corporation, Santa Rosa, Calif., November30, 1984).
  8. D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
    [CrossRef]
  9. L. G. DeShazer, S. C. Rand, B. A. Wechsler, “Laser crystals,” in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1987), Vol. V, Part 3, p. 287, Fig. 1.5.2.
  10. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986).
    [CrossRef]
  11. S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).
  12. K. W. Kirby, L. G. DeShazer, “Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4,” J. Opt. Soc. Am. B 4, 1072–1078 (1987).
    [CrossRef]
  13. K. E. Wilson, “Thermo-optics of nonlinear crystals and laser materials,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1980).
  14. A. Y. Cabezas, L. G. Komai, R. P. Treat, “Dynamic measurements of phase shifts in laser amplifiers,” Appl. Opt. 5, 647–651 (1966).
    [CrossRef] [PubMed]
  15. K. W. Martin, L. G. DeShazer, “Indices of refraction of the biaxial crystal YAlO3,” Appl. Opt. 12, 941–943 (1973). The indices at 587.5 nm increased by 0.0012 with 1 at. % of Nd doping.
    [CrossRef] [PubMed]
  16. M. J. Dodge, I. H. Malitson, A. I. Mahan, “A special method for precise refractive index measurement of uniaxial optical media,” Appl. Opt. 8, 1703–1704 (1969). The refractive-index increase with Cr doping in Al2O3was measured to be 0.005 per 1 wt. %, which equals 0.0014 per 1020 ions/cm3.
    [CrossRef] [PubMed]
  17. Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
    [CrossRef]
  18. K. E. Wilson, L. G. DeShazer, “Dispersion of thermo-optic coefficients of Nd laser materials,” in Basic Optical Properties of Materials, NBS Spec. Publ. 574 (U.S. Government Printing Office, Washington, D.C., 1980), pp. 221–222.
  19. V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).
  20. Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).
  21. J. C. Lee, S. D. Jacobs, “Refractive index and dn/dT of Cr, Nd:GSGG at 1064 nm,” Appl. Opt. 26, 777 (1987).
    [CrossRef] [PubMed]

1987 (2)

1986 (1)

1984 (2)

J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
[CrossRef]

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

1982 (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

1976 (1)

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

1975 (1)

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

1974 (1)

C. D. Brandle, J. C. Vanderleeden, “Growth, optical properties, and cw laser action of neodymium-doped gadolinium scandium aluminum garnet,” IEEE J. Quantum Electron. QE-10, 67–71 (1974).
[CrossRef]

1973 (2)

Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
[CrossRef]

K. W. Martin, L. G. DeShazer, “Indices of refraction of the biaxial crystal YAlO3,” Appl. Opt. 12, 941–943 (1973). The indices at 587.5 nm increased by 0.0012 with 1 at. % of Nd doping.
[CrossRef] [PubMed]

1969 (1)

1966 (1)

Bagdasarov, Kh. S.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Balabonova, S. A.

S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).

Bendow, B.

Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
[CrossRef]

Bogomolova, G. A.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Brandle, C. D.

C. D. Brandle, J. C. Vanderleeden, “Growth, optical properties, and cw laser action of neodymium-doped gadolinium scandium aluminum garnet,” IEEE J. Quantum Electron. QE-10, 67–71 (1974).
[CrossRef]

Bruni, F. J.

F. J. Bruni, “Exploratory crystal growth of laser host oxide crystals,” Interim Rep. (Material Progress Corporation, Santa Rosa, Calif., November30, 1984).

Cabezas, A. Y.

Caird, J. A.

Chikov, V. A.

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

DeShazer, L. G.

K. W. Kirby, L. G. DeShazer, “Refractive indices of 14 nonlinear crystals isomorphic to KH2PO4,” J. Opt. Soc. Am. B 4, 1072–1078 (1987).
[CrossRef]

K. W. Martin, L. G. DeShazer, “Indices of refraction of the biaxial crystal YAlO3,” Appl. Opt. 12, 941–943 (1973). The indices at 587.5 nm increased by 0.0012 with 1 at. % of Nd doping.
[CrossRef] [PubMed]

K. E. Wilson, L. G. DeShazer, “Dispersion of thermo-optic coefficients of Nd laser materials,” in Basic Optical Properties of Materials, NBS Spec. Publ. 574 (U.S. Government Printing Office, Washington, D.C., 1980), pp. 221–222.

L. G. DeShazer, S. C. Rand, B. A. Wechsler, “Laser crystals,” in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1987), Vol. V, Part 3, p. 287, Fig. 1.5.2.

Dodge, M. J.

Drube, J.

J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
[CrossRef]

Duczynski, E. W.

E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), Vol. 52, pp. 282–290.
[CrossRef]

Gloshkova, V. B.

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Gritsenko, M. M.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Herrnring, J.

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

Huber, G.

J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), Vol. 52, pp. 282–290.
[CrossRef]

Jacobs, S. D.

Kaminskii, A. A.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Kevorkov, A. M.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Kirby, K. W.

Komai, L. G.

Krupke, W. F.

Krzhizhanovskaya, V. A.

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Laptev, V. V.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).

Lee, J. C.

Mahan, A. I.

Malitson, I. H.

Marion, J. E.

Martin, K. W.

Mateika, D.

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

Mitra, S. S.

Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
[CrossRef]

Mitzscherlich, P.

E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), Vol. 52, pp. 282–290.
[CrossRef]

Osiko, V. V.

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Ostroumov, V. G.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

Privis, Yu. S.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

Rand, S. C.

L. G. DeShazer, S. C. Rand, B. A. Wechsler, “Laser crystals,” in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1987), Vol. V, Part 3, p. 287, Fig. 1.5.2.

Rath, R.

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

Rusche, Ch.

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

Sarkisov, S. E.

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Shcherbakov, I. A.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

Shigorin, V. D.

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).

Shinn, M. D.

Smirnov, V. A.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

Stodenikin, P. A.

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Stokowski, S. E.

Struve, B.

J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

Treat, R. P.

Tsay, Y.

Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
[CrossRef]

Vanderleeden, J. C.

C. D. Brandle, J. C. Vanderleeden, “Growth, optical properties, and cw laser action of neodymium-doped gadolinium scandium aluminum garnet,” IEEE J. Quantum Electron. QE-10, 67–71 (1974).
[CrossRef]

Wechsler, B. A.

L. G. DeShazer, S. C. Rand, B. A. Wechsler, “Laser crystals,” in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1987), Vol. V, Part 3, p. 287, Fig. 1.5.2.

Wilson, K. E.

K. E. Wilson, “Thermo-optics of nonlinear crystals and laser materials,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1980).

K. E. Wilson, L. G. DeShazer, “Dispersion of thermo-optic coefficients of Nd laser materials,” in Basic Optical Properties of Materials, NBS Spec. Publ. 574 (U.S. Government Printing Office, Washington, D.C., 1980), pp. 221–222.

Zharikov, Ye. V.

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Zinov’ev, S. Yu.

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Appl. Opt. (4)

Appl. Phys. B (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, Ye. V. Zharikov, “Laser action and broad band fluorescence in Cr3+:GdScGa-garnet,” Appl. Phys. B 28, 235–236 (1982).

IEEE J. Quantum Electron. (1)

C. D. Brandle, J. C. Vanderleeden, “Growth, optical properties, and cw laser action of neodymium-doped gadolinium scandium aluminum garnet,” IEEE J. Quantum Electron. QE-10, 67–71 (1974).
[CrossRef]

J. Cryst. Growth (1)

D. Mateika, J. Herrnring, R. Rath, Ch. Rusche, “Growth and investigation of {Gd3−x Cax} [Ga2−y−x Zry Gdx] (Ga3)O12garnets,” J. Cryst. Growth 30, 311–316 (1975).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Drube, B. Struve, G. Huber, “Tunable room-temperature cw laser action in Cr3+:GdScAl-garnet,” Opt. Commun. 50, 45–48 (1984). Note that the peak cross sections quoted for T 1 and T 2 bands were inadvertently transposed in this paper.
[CrossRef]

Phys. Rev. B (1)

Y. Tsay, B. Bendow, S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B 8, 2688–2695 (1973).
[CrossRef]

Phys. Status Solidi (a) (1)

A. A. Kaminskii, Kh. S. Bagdasarov, G. A. Bogomolova, M. M. Gritsenko, A. M. Kevorkov, S. E. Sarkisov, “Luminescence and stimulated emission of Nd3+ions in Gd3Sc2Ga3O12crystals,” Phys. Status Solidi (a) 34, K109–K114 (1976).
[CrossRef]

Sov. J. Quantum Electron. (1)

Ye. V. Zharikov, V. V. Laptev, V. G. Ostroumov, Yu. S. Privis, V. A. Smirnov, I. A. Shcherbakov, “Investigation of a new laser active medium in the form of gadolinium scandium gallium garnet crystals activated with chromium and neodymium,” Sov. J. Quantum Electron. 14, 1056–1062 (1984). References to previous publications are found in this paper.
[CrossRef]

Other (8)

E. W. Duczynski, G. Huber, P. Mitzscherlich, “Laser action of Cr, Nd, Tm, Ho-doped garnets,” in Tunable Solid-State Lasers II, A. B. Budgor, L. Esterowitz, L. G. DeShazer, eds. (Springer-Verlag, Berlin, 1986), Vol. 52, pp. 282–290.
[CrossRef]

F. J. Bruni, “Exploratory crystal growth of laser host oxide crystals,” Interim Rep. (Material Progress Corporation, Santa Rosa, Calif., November30, 1984).

L. G. DeShazer, S. C. Rand, B. A. Wechsler, “Laser crystals,” in CRC Handbook of Laser Science and Technology, M. J. Weber, ed. (CRC, Boca Raton, Fla., 1987), Vol. V, Part 3, p. 287, Fig. 1.5.2.

S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare-earth gallium garnets,” (Lebedev Physical Institute, Moscow, 1983); S. A. Balabonova, Ye. V. Zharikov, V. V. Laptev, V. D. Shigorin, “Refractive indices of rare earth gallium garnets,” Sov. Phys. Crystallog. 29, 704–705 (1984).

K. E. Wilson, “Thermo-optics of nonlinear crystals and laser materials,” Ph.D. dissertation (University of Southern California, Los Angeles, Calif., 1980).

K. E. Wilson, L. G. DeShazer, “Dispersion of thermo-optic coefficients of Nd laser materials,” in Basic Optical Properties of Materials, NBS Spec. Publ. 574 (U.S. Government Printing Office, Washington, D.C., 1980), pp. 221–222.

V. B. Gloshkova, Ye. V. Zharikov, S. Yu. Zinov’ev, V. A. Krzhizhanovskaya, V. V. Osiko, P. A. Stodenikin, “Thermal expansion of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1986).

Ye. V. Zharikov, P. A. Stodenikin, V. A. Chikov, V. D. Shigorin, Yu. S. Privis, I. A. Shcherbakov, “Temperature measurement of refractive indices of rare-earth gallium garnets,” (General Physics Institute, Moscow, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental arrangement for measurement of αn and αL by Fizeau and Twyman–Green interferometry. Sample tilt is exaggerated for ease of illustration.

Fig. 2
Fig. 2

Thermal motion of (top) Fizeau and (bottom) Twyman–Green fringes from 35 to 40°C. Sample was 1.885 cm long, and probe wavelength was 632.8 nm.

Tables (10)

Tables Icon

Table 1 Refractive Indices of Undoped GSGG (Material Progress Sample MP-15) with Respect to Air at 26.0°C ± 0.4°Ca

Tables Icon

Table 2 Refractive Indices of Cr:GSGG (Union Carbide) with Respect to Aira

Tables Icon

Table 3 Refractive Indices of Cr:GSAG (Union Carbide) with Respect to Air at T = 26.0 ± 0.4°Ca

Tables Icon

Table 4 Refractive Indices of Undoped GGG (Union Carbide) with Respect to Aira

Tables Icon

Table 5 Refractive Indices of Undoped GGG:Ca, Zr (Sample MP-18) with Respect to Aira

Tables Icon

Table 6 Thermal Change of Refractive Index of GSGG (Material Progress Sample MP-15) with Respect to Vacuuma

Tables Icon

Table 7 Thermal Change of Refractive Index of Cr:GSGG (Union Carbide) with Respect to Vacuuma

Tables Icon

Table 8 Thermal Change of Refractive Index of Cr:GSAG (Union Carbide Sample) with Respect to Vacuuma

Tables Icon

Table 9 Thermal Change of Refractive Index of Nd:CZGGG (Material Progress Sample MP-18) with Respect to Vacuuma

Tables Icon

Table 10 Comparison of Thermal Expansion and Thermo-Optic Coefficients for Garnets in the 35–40°C Range

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d δ / d T = 2 n k L ( α n + α L ) .
Δ T F = λ / [ 2 n L ( α n + α L ) ] .
d δ / d T = 2 k n L { [ ( n - 1 ) / n ] α L + α n } .
Δ T T = λ / 2 n L { [ ( n - 1 ) / n ] α L + α n } .
α n = ( λ / 2 L ) { ( 1 / Δ T T ) - [ ( n - 1 ) / n ] ( 1 / Δ T F }
α L = ( λ / 2 L ) [ ( 1 / Δ T F ) - ( 1 / Δ T T ) ] .
n 2 = A + C B / ( C λ 2 - 1 ) + D λ 2 / ( E λ 2 - 1 ) .

Metrics