Abstract

Several types of instability in passive Q switching and optical bistability are observed in a number of 10-μm laser lines in a N2O laser with intracavity saturable absorbers such as NH3, SF6, C2H4, C2H3Cl, and CCl2F2. The observed pulse shapes are reproduced well by a calculation based on the recently proposed rate-equation model. Characteristic dependences of passive Q switching and bistability on the laser parameters are explained with a phase diagram derived theoretically.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. R. Wood and S. E. Schwarz, “Passive Q-switching of a CO2laser,” Appl. Phys. Lett. 11, 88 (1967).
    [Crossref]
  2. C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
    [Crossref]
  3. H. Haken, “Analogy between higher instabilities in fluids and lasers,” Phys. Lett. 53A, 77 (1975).
  4. L. W. Casperson, “Spontaneous coherent pulsations in laser oscillator,” IEEE J. Quantum Electron. QE-14, 756 (1978).
    [Crossref]
  5. M.-L. Shin, P. W. Milonni, and J. R. Ackerhalt, “Modeling laser instabilities and chaos,” J. Opt. Soc. Am. B 2, 130 (1985).
    [Crossref]
  6. R. S. Gioggia and N. Abraham, “Routes to chaotic output from a single-mode, dc-excited laser,” Phys. Rev. Lett. 51, 650 (1983).
    [Crossref]
  7. M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
    [Crossref]
  8. M. Tachikawa, K. Tanii, and T. Shimizu, “Comprehensive interpretation of passive Q switching and optical bistability in a CO2laser with an intracavity saturable absorber,” J. Opt. Soc. Am. B 4, 387 (1987).
    [Crossref]
  9. E. Arimondo, P. Bootz, P. Glorieux, and E. Menchi, “Pulse shape and phase diagram in the passive Q switching of CO2lasers,” J. Opt. Soc. Am. B 2, 193 (1985).
    [Crossref]
  10. H. Brunet and F. Voignier, “Passive Q-switching of a N2O laser using ethylene,” Appl. Phys. Lett. 15, 423 (1969).
    [Crossref]
  11. A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
    [Crossref]
  12. J. H. McCoy, “Passive Q-switched N2O laser,” IEEE J. Quantum Electron. QE-6, 567 (1970).
    [Crossref]
  13. C. O. Weiss, “Optically bistable N2O-laser,” Opt. Commun. 42, 291 (1982).
    [Crossref]

1987 (1)

1986 (1)

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

1985 (3)

1983 (1)

R. S. Gioggia and N. Abraham, “Routes to chaotic output from a single-mode, dc-excited laser,” Phys. Rev. Lett. 51, 650 (1983).
[Crossref]

1982 (1)

C. O. Weiss, “Optically bistable N2O-laser,” Opt. Commun. 42, 291 (1982).
[Crossref]

1978 (1)

L. W. Casperson, “Spontaneous coherent pulsations in laser oscillator,” IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

1975 (1)

H. Haken, “Analogy between higher instabilities in fluids and lasers,” Phys. Lett. 53A, 77 (1975).

1974 (1)

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

1970 (1)

J. H. McCoy, “Passive Q-switched N2O laser,” IEEE J. Quantum Electron. QE-6, 567 (1970).
[Crossref]

1969 (1)

H. Brunet and F. Voignier, “Passive Q-switching of a N2O laser using ethylene,” Appl. Phys. Lett. 15, 423 (1969).
[Crossref]

1967 (1)

O. R. Wood and S. E. Schwarz, “Passive Q-switching of a CO2laser,” Appl. Phys. Lett. 11, 88 (1967).
[Crossref]

Abraham, N.

R. S. Gioggia and N. Abraham, “Routes to chaotic output from a single-mode, dc-excited laser,” Phys. Rev. Lett. 51, 650 (1983).
[Crossref]

Ackerhalt, J. R.

Arimondo, E.

Bootz, P.

Brunet, H.

H. Brunet and F. Voignier, “Passive Q-switching of a N2O laser using ethylene,” Appl. Phys. Lett. 15, 423 (1969).
[Crossref]

Casperson, L. W.

L. W. Casperson, “Spontaneous coherent pulsations in laser oscillator,” IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

Cooper, M.

C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
[Crossref]

Ering, P. S.

C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
[Crossref]

Gioggia, R. S.

R. S. Gioggia and N. Abraham, “Routes to chaotic output from a single-mode, dc-excited laser,” Phys. Rev. Lett. 51, 650 (1983).
[Crossref]

Glorieux, P.

Haken, H.

H. Haken, “Analogy between higher instabilities in fluids and lasers,” Phys. Lett. 53A, 77 (1975).

Homma, Y.

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

Kajita, M.

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

Klische, W.

C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
[Crossref]

McCoy, J. H.

J. H. McCoy, “Passive Q-switched N2O laser,” IEEE J. Quantum Electron. QE-6, 567 (1970).
[Crossref]

Menchi, E.

Milonni, P. W.

Mori, A.

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

Schwarz, S. E.

O. R. Wood and S. E. Schwarz, “Passive Q-switching of a CO2laser,” Appl. Phys. Lett. 11, 88 (1967).
[Crossref]

Shimizu, T.

M. Tachikawa, K. Tanii, and T. Shimizu, “Comprehensive interpretation of passive Q switching and optical bistability in a CO2laser with an intracavity saturable absorber,” J. Opt. Soc. Am. B 4, 387 (1987).
[Crossref]

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

Shin, M.-L.

Tachikawa, M.

M. Tachikawa, K. Tanii, and T. Shimizu, “Comprehensive interpretation of passive Q switching and optical bistability in a CO2laser with an intracavity saturable absorber,” J. Opt. Soc. Am. B 4, 387 (1987).
[Crossref]

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

Tanaka, A.

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

Tanii, K.

M. Tachikawa, K. Tanii, and T. Shimizu, “Comprehensive interpretation of passive Q switching and optical bistability in a CO2laser with an intracavity saturable absorber,” J. Opt. Soc. Am. B 4, 387 (1987).
[Crossref]

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

Voignier, F.

H. Brunet and F. Voignier, “Passive Q-switching of a N2O laser using ethylene,” Appl. Phys. Lett. 15, 423 (1969).
[Crossref]

Weiss, C. O.

C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
[Crossref]

C. O. Weiss, “Optically bistable N2O-laser,” Opt. Commun. 42, 291 (1982).
[Crossref]

Wood, O. R.

O. R. Wood and S. E. Schwarz, “Passive Q-switching of a CO2laser,” Appl. Phys. Lett. 11, 88 (1967).
[Crossref]

Yamanaka, M.

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

Appl. Phys. B (1)

M. Tachikawa, K. Tanii, M. Kajita, and T. Shimizu, “Undamped undulation superposed on the passive Q-switching pulse of a CO2laser,” Appl. Phys. B 39, 83 (1986).
[Crossref]

Appl. Phys. Lett. (2)

H. Brunet and F. Voignier, “Passive Q-switching of a N2O laser using ethylene,” Appl. Phys. Lett. 15, 423 (1969).
[Crossref]

O. R. Wood and S. E. Schwarz, “Passive Q-switching of a CO2laser,” Appl. Phys. Lett. 11, 88 (1967).
[Crossref]

IEEE J. Quantum Electron. (2)

L. W. Casperson, “Spontaneous coherent pulsations in laser oscillator,” IEEE J. Quantum Electron. QE-14, 756 (1978).
[Crossref]

J. H. McCoy, “Passive Q-switched N2O laser,” IEEE J. Quantum Electron. QE-6, 567 (1970).
[Crossref]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

A. Tanaka, A. Mori, Y. Homma, and M. Yamanaka, “Characteristics of 10.8-μ m N2O lasers in cw and Q-switching operations,” Jpn. J. Appl. Phys. 13, 2009 (1974).
[Crossref]

Opt. Commun. (2)

C. O. Weiss, W. Klische, P. S. Ering, and M. Cooper, “Instabilities and chaos of a single mode NH3ring laser,” Opt. Commun. 52, 405 (1985).
[Crossref]

C. O. Weiss, “Optically bistable N2O-laser,” Opt. Commun. 42, 291 (1982).
[Crossref]

Phys. Lett. (1)

H. Haken, “Analogy between higher instabilities in fluids and lasers,” Phys. Lett. 53A, 77 (1975).

Phys. Rev. Lett. (1)

R. S. Gioggia and N. Abraham, “Routes to chaotic output from a single-mode, dc-excited laser,” Phys. Rev. Lett. 51, 650 (1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Observed and (a′) calculated PQS pulse train. The pulse has the form of a single spike.

Fig. 2
Fig. 2

(a)–(e) Observed and (a′)–(e′) calculated characteristic dependence of PQS behavior [type (B)] when the pressure of the absorbing gas and the relaxation rate R, respectively, are varied.

Fig. 3
Fig. 3

(a)–(d) Observed and (a′)–(d′) calculated characteristic dependence of PQS behavior [type (B′)] when the pressure of the absorbing gas and the relaxation rate, respectively, are varied.

Fig. 4
Fig. 4

(a)–(c) Observed and (a′)–(c′) calculated characteristic dependence of PQS behavior [type (C)] when the pressure of the absorbing gas and the relaxation rate, respectively, are varied.

Fig. 5
Fig. 5

Observed hysteresis curve of the laser output on the R(15) line as a function of the SF6 pressure. Bistability is observed in the pressure range between Pon and Poff.

Fig. 6
Fig. 6

Model of the gain medium and the absorbing medium used in the rate-equation analysis.

Fig. 7
Fig. 7

Theoretically obtained phase diagram for the relaxation rate R and the absorption parameter b. The observed six characteristic dependences of the laser oscillation on the absorber pressure are clearly shown.

Fig. 8
Fig. 8

Photon density as steady-state solutions of the rate equations. Photon density is plotted as a function of the relaxation rate R, which is proportional to the pressure of the satu rable absorber. The solid line represents the photon density in the c:w laser oscillation. The laser is unstable at the photon density rep resented by the dashed line. The bistable range is between R2 and R3.

Tables (3)

Tables Icon

Table 1 Laser Lines for Which Six Types of Characteristic Dependence Are Observed for Five Kinds of Saturable Absorber

Tables Icon

Table 2 Notation of the Parameters Used in the Rate Equations

Tables Icon

Table 3 Parameter Values Used in the Phase-Diagram Analysis and the Reproduction of Passive Q-Switching Pulses and Bistable Hysteresis

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d n / d t = B g f g ( J ) n ( M 1 - M 2 ) l g / L - B a n N l a / L - k n + A M 1 , d M 1 / d t = - B g f g ( J ) n ( M 1 - M 2 ) + P M - ( P + R 10 + R 12 ) × M 1 - P M 2 , d M 2 / d t = B g f g ( J ) n ( M 1 - M 2 ) + R 12 M 1 - R 20 M 2 , d N / d t = - 2 B a N - r ( N - N * ) .
b = B a / ( B g f g ) ,

Metrics