Abstract

We succeeded in generating bandwidth-limited 81-fsec optical pulses from a synchronously pumped, hybrid mode-locked cw dye laser with an average power of 35 mW and a repetition rate of 79.70 MHz. The laser consists of a linear cavity with two separate dye jets and two Gires–Tournois interferometers for adjustment of the intracavity group-velocity dispersion. We analyzed the dependence of the random fluctuations of the output pulse train on the cavity parameters. We found increased stability compared with earlier experiments and attributed it to the efficient intracavity chirp compensation by the Gires–Tournois interferometers.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
    [CrossRef]
  2. E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
    [CrossRef]
  3. J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
    [CrossRef] [PubMed]
  4. J. A. Valdmanis, R. L. Fork, IEEE J. Quantum Electron. QE-22, 112 (1986).
    [CrossRef]
  5. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  6. M. Yamashita, M. Ishikawa, U. Torizuka, T. Sato, Opt. Lett. 11, 504 (1986).
    [CrossRef] [PubMed]
  7. J. Heppner, J. Kuhl, Appl. Phys. Lett. 47, 453 (1985).
    [CrossRef]
  8. M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
    [CrossRef]
  9. M. Nakazawa, T. Nakashima, H. Kubota, S. Seikai, Opt. Lett. 12, 681 (1987).
    [CrossRef] [PubMed]
  10. W. H. Knox, J. Opt. Soc. Am. B 4, 1771 (1987).
    [CrossRef]
  11. D. von der Linde, Appl. Phys. B. 39, 201 (1986).
    [CrossRef]
  12. D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
    [CrossRef]
  13. E. W. Stryland, Opt. Commun. 31, 93 (1979).
    [CrossRef]
  14. D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
    [CrossRef]
  15. J. Chesnoy, L. Fini, Opt. Lett. 11, 635 (1986).
    [CrossRef] [PubMed]

1987

1986

M. Yamashita, M. Ishikawa, U. Torizuka, T. Sato, Opt. Lett. 11, 504 (1986).
[CrossRef] [PubMed]

J. Chesnoy, L. Fini, Opt. Lett. 11, 635 (1986).
[CrossRef] [PubMed]

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

J. A. Valdmanis, R. L. Fork, IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

D. von der Linde, Appl. Phys. B. 39, 201 (1986).
[CrossRef]

D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
[CrossRef]

1985

J. Heppner, J. Kuhl, Appl. Phys. Lett. 47, 453 (1985).
[CrossRef]

D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
[CrossRef]

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

1984

1981

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

1979

E. W. Stryland, Opt. Commun. 31, 93 (1979).
[CrossRef]

1972

E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
[CrossRef]

Boggess, T. F.

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

Bonkhofer, T.

D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
[CrossRef]

Chesnoy, J.

Dawson, M. D.

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

Dienes, A.

E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
[CrossRef]

Fini, L.

Fork, R. L.

J. A. Valdmanis, R. L. Fork, IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
[CrossRef] [PubMed]

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Garvey, D. W.

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

Gordon, J. P.

Greene, B. I.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

Heppner, J.

J. Heppner, J. Kuhl, Appl. Phys. Lett. 47, 453 (1985).
[CrossRef]

Herpers, U.

D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
[CrossRef]

Ishikawa, M.

Knox, W. H.

Kubota, H.

Kuhl, J.

J. Heppner, J. Kuhl, Appl. Phys. Lett. 47, 453 (1985).
[CrossRef]

Kühlke, D.

D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
[CrossRef]

D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
[CrossRef]

Martinez, O. E.

Nakashima, T.

Nakazawa, M.

Sato, T.

Seikai, S.

Shank, C. V.

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
[CrossRef]

Smirl, A. L.

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

Stryland, E. W.

E. W. Stryland, Opt. Commun. 31, 93 (1979).
[CrossRef]

Torizuka, U.

Valdmanis, J. A.

J. A. Valdmanis, R. L. Fork, IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
[CrossRef] [PubMed]

von der Linde, D.

D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
[CrossRef]

D. von der Linde, Appl. Phys. B. 39, 201 (1986).
[CrossRef]

D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
[CrossRef]

Yamashita, M.

Appl. Phys. B

D. Kühlke, U. Herpers, D. von der Linde, Appl. Phys. B 38, 233 (1985).
[CrossRef]

Appl. Phys. B.

D. von der Linde, Appl. Phys. B. 39, 201 (1986).
[CrossRef]

Appl. Phys. Lett.

J. Heppner, J. Kuhl, Appl. Phys. Lett. 47, 453 (1985).
[CrossRef]

R. L. Fork, B. I. Greene, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981).
[CrossRef]

E. P. Ippen, C. V. Shank, A. Dienes, Appl. Phys. Lett. 21, 348 (1972).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Valdmanis, R. L. Fork, IEEE J. Quantum Electron. QE-22, 112 (1986).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

E. W. Stryland, Opt. Commun. 31, 93 (1979).
[CrossRef]

D. Kühlke, T. Bonkhofer, D. von der Linde, Opt. Commun. 59, 208 (1986).
[CrossRef]

M. D. Dawson, T. F. Boggess, D. W. Garvey, A. L. Smirl, Opt. Commun. 60, 79 (1986).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the hybrid mode-locked dye laser.

Fig. 2
Fig. 2

Variation of the pulse duration tp (filled circles) and the maximum emission wavelength λ (triangles) versus the angle of light θ incident upon the GTI.

Fig. 3
Fig. 3

Background-free autocorrelation trace of the output pulses. The real pulse width is 81 fsec when a sech2 pulse shape is assumed.

Fig. 4
Fig. 4

Power spectrum of the fundamental pulse train at the first frequency component (f1 = 79.70 MHz) with a resolution bandwidth (RES. BW.) of 3 kHz. The noise band has a FWHM of 200 kHz and is due to pulse-energy fluctuations. The signal-to-noise ratio has a rms value of 0.4%.

Fig. 5
Fig. 5

Power spectrum of the second-harmonic pulse train at the first frequency component (f1 = 79.70 MHz) with a resolution bandwidth (RES. BW.) of 3 kHz. The noise band has a FWHM of 100 kHz and is due to fluctuations of the pulse duration. The signal-to-noise ratio has a rms value of 2%.

Fig. 6
Fig. 6

Power spectrum of the fundamental pulse train at the first frequency component (f1 = 79.70 MHz) with a resolution bandwidth (RES. BW.) of 30 Hz. The noise band has a FWHM of 730 Hz and is due to pulse-energy fluctuations. The signal-to-noise ratio has a rms value of 16%.

Tables (2)

Tables Icon

Table 1 Ar+-Laser Pulse Fluctuations

Tables Icon

Table 2 Dye-Laser Pulse Fluctuations

Metrics