Abstract

The (5)Σ1g+ state has been studied by two-step excitation spectroscopy. 270 levels in the state were measured with high resolution. A set of Dunham coefficients was deduced to fit all levels with v < 19. The spectroscopic data were used to construct a Rydberg–Klein–Rees potential for the state. The potential shows that the state is perturbed by other Rydberg states and ionic states and seems likely to have a second well that is due to avoided crossings with these states.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
    [CrossRef]
  2. A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
    [CrossRef]
  3. S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
    [CrossRef]
  4. Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
    [CrossRef]
  5. C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
    [CrossRef]
  6. D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
    [CrossRef]
  7. A. Valance, Q. N. Tuan, J. Phys. B 15, 17–33 (1982).
    [CrossRef]
  8. G. H. Jeung, J. Phys. B 16, 4289–4297 (1983).
    [CrossRef]
  9. G. H. Jeung, Phys. Rev. A 35, 26–35 (1987).
    [CrossRef] [PubMed]
  10. G.-Y. Yan, T. P. Duffey, W.-M. Du, A. L. Schawlow, J. Opt. Soc. Am. B 4, 1829–1834 (1987).
    [CrossRef]
  11. M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
    [CrossRef]
  12. H.-R. Xia, G.-Y. Yan, A. L. Schawlow, Opt. Commun. 39, 153–159 (1981).
    [CrossRef]
  13. M. M. Hessel, Laser Molecular Physics Section, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (personal communication, 1976). (The coefficients were tabulated on pp. 21–22 of Ref. 14.)
  14. M. E. Kaminsky, Ph.D. dissertation, Ginzton Lab. Rep. 2531 (Stanford University, Stanford, Calif., 1976).
  15. G. Delacretaz, L. Wöste, Chem. Phys. Lett. 120, 342–348 (1985).
    [CrossRef]

1987 (2)

1985 (1)

G. Delacretaz, L. Wöste, Chem. Phys. Lett. 120, 342–348 (1985).
[CrossRef]

1984 (3)

Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
[CrossRef]

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

1983 (2)

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

G. H. Jeung, J. Phys. B 16, 4289–4297 (1983).
[CrossRef]

1982 (2)

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

A. Valance, Q. N. Tuan, J. Phys. B 15, 17–33 (1982).
[CrossRef]

1981 (2)

A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
[CrossRef]

H.-R. Xia, G.-Y. Yan, A. L. Schawlow, Opt. Commun. 39, 153–159 (1981).
[CrossRef]

1976 (1)

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

Bahns, J. T.

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

Barrow, R. F.

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

Broyer, M.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Cabaud, B.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Chevaleyre, J.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Cooper, D. L.

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

d’Incan, J.

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

Delacretaz, G.

G. Delacretaz, L. Wöste, Chem. Phys. Lett. 120, 342–348 (1985).
[CrossRef]

Du, W.-M.

Duffey, T. P.

Effantin, C.

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

Field, R. W.

Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
[CrossRef]

Hawkins, R. T.

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

Hessel, M. M.

M. M. Hessel, Laser Molecular Physics Section, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (personal communication, 1976). (The coefficients were tabulated on pp. 21–22 of Ref. 14.)

Hoareau, A.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Jeung, G. H.

G. H. Jeung, Phys. Rev. A 35, 26–35 (1987).
[CrossRef] [PubMed]

G. H. Jeung, J. Phys. B 16, 4289–4297 (1983).
[CrossRef]

Jones, K. M.

A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
[CrossRef]

Kaminsky, M. E.

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

M. E. Kaminsky, Ph.D. dissertation, Ginzton Lab. Rep. 2531 (Stanford University, Stanford, Calif., 1976).

Kowalski, F. V.

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

Li, Li

Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
[CrossRef]

Martin, S.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Perrot, J. P.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Rajaei-Rizi, A. R.

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

Rice, S. F.

Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
[CrossRef]

Ross, A. J.

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

Schawlow, A. L.

G.-Y. Yan, T. P. Duffey, W.-M. Du, A. L. Schawlow, J. Opt. Soc. Am. B 4, 1829–1834 (1987).
[CrossRef]

H.-R. Xia, G.-Y. Yan, A. L. Schawlow, Opt. Commun. 39, 153–159 (1981).
[CrossRef]

A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
[CrossRef]

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

Stwalley, W. C.

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

Taylor, A. J.

A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
[CrossRef]

Tuan, Q. N.

A. Valance, Q. N. Tuan, J. Phys. B 15, 17–33 (1982).
[CrossRef]

Valance, A.

A. Valance, Q. N. Tuan, J. Phys. B 15, 17–33 (1982).
[CrossRef]

Valignat, S.

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

Vergés, J.

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

Verma, K. K.

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

Wöste, L.

G. Delacretaz, L. Wöste, Chem. Phys. Lett. 120, 342–348 (1985).
[CrossRef]

Xia, H.-R.

H.-R. Xia, G.-Y. Yan, A. L. Schawlow, Opt. Commun. 39, 153–159 (1981).
[CrossRef]

Yan, G.-Y.

Zemke, W. T.

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

Can. J. Phys. (1)

D. L. Cooper, R. F. Barrow, J. Vergés, C. Effantin, J. d’Incan, Can. J. Phys. 62, 1543–1562 (1984).
[CrossRef]

Chem. Phys. Lett. (2)

S. Martin, J. Chevaleyre, S. Valignat, J. P. Perrot, M. Broyer, B. Cabaud, A. Hoareau, Chem. Phys. Lett. 87, 235–239 (1982).
[CrossRef]

G. Delacretaz, L. Wöste, Chem. Phys. Lett. 120, 342–348 (1985).
[CrossRef]

J. Chem. Phys. (1)

K. K. Verma, J. T. Bahns, A. R. Rajaei-Rizi, W. C. Stwalley, W. T. Zemke, J. Chem. Phys. 78, 3599–3613 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

Li Li, S. F. Rice, R. W. Field, J. Mol. Spectrosc. 105, 344–350 (1984); Li Li, R. W. Field, J. Phys. Chem. 87, 3020–3022 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (3)

C. Effantin, J. d’Incan, A. J. Ross, R. F. Barrow, J. Vergés, J. Phys. B 17, 1515–1523 (1984).
[CrossRef]

A. Valance, Q. N. Tuan, J. Phys. B 15, 17–33 (1982).
[CrossRef]

G. H. Jeung, J. Phys. B 16, 4289–4297 (1983).
[CrossRef]

Opt. Commun. (2)

A. J. Taylor, K. M. Jones, A. L. Schawlow, Opt. Commun. 39, 47–50 (1981); J. Opt. Soc. Am. 73, 994–998 (1983); A. J. Taylor, Ph.D. dissertation, Ginzton Lab. Rep. 3445 (Stanford University, Stanford, Calif., 1982).
[CrossRef]

H.-R. Xia, G.-Y. Yan, A. L. Schawlow, Opt. Commun. 39, 153–159 (1981).
[CrossRef]

Phys. Rev. A (1)

G. H. Jeung, Phys. Rev. A 35, 26–35 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. E. Kaminsky, R. T. Hawkins, F. V. Kowalski, A. L. Schawlow, Phys. Rev. Lett. 36, 671–673 (1976).
[CrossRef]

Other (2)

M. M. Hessel, Laser Molecular Physics Section, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (personal communication, 1976). (The coefficients were tabulated on pp. 21–22 of Ref. 14.)

M. E. Kaminsky, Ph.D. dissertation, Ginzton Lab. Rep. 2531 (Stanford University, Stanford, Calif., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: PMT’s, photomultiplier tubes.

Fig. 2
Fig. 2

Progression of vibrational spacings versus v for several J values.

Fig. 3
Fig. 3

Energies of levels for v = 31 versus J. The curve is given by E(v, J) = Te + Gv + BvJ(J + 1) − Dv[J(J + 1)]2 + Hv[J(J + 1)]3, where Te + Gv = 3.456548 × 104 cm−1, Bv = 7.0057 × 10−2 cm−1, Dv = 6.5844 × 10−7 cm−1, and Hv = 8.6180 × 10−12 cm−1.

Fig. 4
Fig. 4

Combination of electronic and vibrational energies Te + Gv versus v. The curve is calculated by using the Dunham coefficients Y10Y40 and Te in Table 1.

Fig. 5
Fig. 5

Rotational constants Bv versus v for the ( 5 ) Σ 1 g + state. The calculated Bv for v ≤ 20 is shown by the curve.

Fig. 6
Fig. 6

〈1/r2−1/2 versus v for the X Σ 1 g + , A Σ 1 u +, and ( 5 ) Σ 1 g + states.

Fig. 7
Fig. 7

Rotationless potential for the ( 5 ) Σ 1 g + state. The circles show the theoretically calculated values for the potential.9

Fig. 8
Fig. 8

(a) Fluorescence spectrum produced by a two-photon transition ( 5 ) Σ 1 g + ( 19 , 46 ) X Σ 1 g + ( 1 , 44 ) with an intermediate level A Σ 1 u + ( 21 , 45 ). (b) Comparison of relative fluorescence intensities for emission from the level ( 5 ) Σ 1 g + ( 19 , 46 ) to calculated Franck–Condon factors. (c) Calculated Franck–Condon factors with the alternative assignment of v values for the ( 5 ) Σ 1 g + state.

Fig. 9
Fig. 9

Comparison between calculated Franck–Condon factors and measured strengths of lines in an excitation spectrum.

Fig. 10
Fig. 10

Energies E(v, J) measured for J = 13, 24, 48, 50 versus v, when v values are greater than 40. Curves fitting these data are expressed by polynominals.

Tables (2)

Tables Icon

Table 1 Dunham Coefficients for the ( 5 ) Σ 1 g + state (v < 19)

Tables Icon

Table 2 Rotationless Potential for the ( 5 ) Σ 1 g + state

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 r 2 - 1 / 2 = ( h 8 π 2 μ c B v ) 1 / 2 ,

Metrics