Abstract

Hyperfine structure of the rovibronic transitions R(0)–R(10) and P(1)–P(5) in the 13–1 band belonging to the BX system of 127I2 was studied by rectangular-crossing molecular-beam laser spectroscopy. The full width at half-maximum of the observed lines was 5 MHz, which corresponds to a resolving power of 108. Not only allowed transitions ΔF = ΔJ but forbidden transitions ΔF = 0 and ΔF = −ΔJ were identified, and absolute hyperfine coupling constants of the rovibronic states (J = 0–10) in the B(v′ = 13)−X(v″ = 1) transition were determined. In addition, the relative line strength of each hyperfine transition was compared with the theoretical value.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
    [Crossref]
  2. S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode 14800–20000 cm−1 (Centre National de la Recherche Scientifique, Orsay, France, 1978).
  3. M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
    [Crossref]
  4. M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
    [Crossref]
  5. H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
    [Crossref]
  6. Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
    [Crossref]
  7. K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
    [Crossref]
  8. L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
    [Crossref]
  9. S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
    [Crossref]
  10. M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
    [Crossref]
  11. A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
    [Crossref]
  12. J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
    [Crossref]
  13. J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
    [Crossref]
  14. G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
    [Crossref]
  15. P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
    [Crossref]
  16. G. W. Robinson and C. D. Cornwell, “The interaction with molecular rotation of the nuclear electric quadrupole moments of two nuclei having spins 3/2,” J. Chem. Phys. 21, 1436–1442 (1953).
    [Crossref]
  17. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, Cambridge, 1951).

1986 (2)

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

1985 (3)

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[Crossref]

K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[Crossref]

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[Crossref]

1984 (1)

A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
[Crossref]

1981 (1)

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

1979 (2)

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[Crossref]

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

1975 (1)

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

1974 (1)

P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[Crossref]

1972 (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[Crossref]

1971 (1)

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

1969 (1)

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[Crossref]

1953 (1)

G. W. Robinson and C. D. Cornwell, “The interaction with molecular rotation of the nuclear electric quadrupole moments of two nuclei having spins 3/2,” J. Chem. Phys. 21, 1436–1442 (1953).
[Crossref]

Bacis, R.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

Blabla, J.

K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[Crossref]

Bordé, Ch. J.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

Bunker, P. R.

P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[Crossref]

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

Camy, G.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

Casleton, K. H.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

Churassy, S.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

Condon, E. U.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, Cambridge, 1951).

Cornwell, C. D.

G. W. Robinson and C. D. Cornwell, “The interaction with molecular rotation of the nuclear electric quadrupole moments of two nuclei having spins 3/2,” J. Chem. Phys. 21, 1436–1442 (1953).
[Crossref]

Decomps, B.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

Descoubes, J.-P.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

Ezekiel, S.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

Foth, H. J.

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[Crossref]

Gaillard, M. L.

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

Gerstenkorn, S.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[Crossref]

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode 14800–20000 cm−1 (Centre National de la Recherche Scientifique, Orsay, France, 1978).

Gläser, M.

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[Crossref]

Grenet, G.

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

Hackel, L. A.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

Hanes, G. R.

P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[Crossref]

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

Hartmann, F.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

Helmcke, J.

K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[Crossref]

Kroll, M.

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[Crossref]

Kukolich, S. G.

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

Lapierre, J.

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

Levenson, M. D.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[Crossref]

Luc, P.

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[Crossref]

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode 14800–20000 cm−1 (Centre National de la Recherche Scientifique, Orsay, France, 1978).

Morinaga, A.

A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
[Crossref]

Pique, J. P.

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

Robinson, G. W.

G. W. Robinson and C. D. Cornwell, “The interaction with molecular rotation of the nuclear electric quadrupole moments of two nuclei having spins 3/2,” J. Chem. Phys. 21, 1436–1442 (1953).
[Crossref]

Schawlow, A. L.

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[Crossref]

Shortley, G. H.

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, Cambridge, 1951).

Shotton, K. C.

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

Spieweck, F.

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[Crossref]

Vigué, J.

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

Zhao, K. G.

K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[Crossref]

Chem. Phys. Lett. (2)

H. J. Foth and F. Spieweck, “Hyperfine structure of the R(98), 58–1 line of 127I2at 514.5 nm,” Chem. Phys. Lett. 65, 347–352 (1979).
[Crossref]

P. R. Bunker and G. R. Hanes, “Nuclear spin–spin coupling in the spectrum of I2at 6328 Å,” Chem. Phys. Lett. 28, 377–379 (1974).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

K. G. Zhao, J. Blabla, and J. Helmcke, “127I2-stabilized 3He–22Ne laser at 640 nm wavelength,” IEEE Trans. Instrum. Meas. IM-34, 252–256 (1985).
[Crossref]

J. Chem. Phys. (1)

G. W. Robinson and C. D. Cornwell, “The interaction with molecular rotation of the nuclear electric quadrupole moments of two nuclei having spins 3/2,” J. Chem. Phys. 21, 1436–1442 (1953).
[Crossref]

J. Mol. Spectrosc. (1)

G. R. Hanes, J. Lapierre, P. R. Bunker, and K. C. Shotton, “Nuclear hyperfine structure in the electronic spectrum of 127I2by saturated absorption spectroscopy, and comparison with theory,” J. Mol. Spectrosc. 39, 506–515 (1971).
[Crossref]

J. Phys. (Paris) (4)

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. I. Theory,” J. Phys. (Paris) 47, 1909–1916 (1986).
[Crossref]

J. P. Pique, F. Hartmann, S. Churassy, and R. Bacis, “Hyperfine interactions in homonuclear diatomic molecules and u–g perturbations. II. Experiments on I2,” J. Phys. (Paris) 47, 1917–1929 (1986).
[Crossref]

Ch. J. Bordé, G. Camy, B. Decomps, J.-P. Descoubes, and J. Vigué, “High precision saturation spectroscopy of 127I2with argon lasers at 5145 Å and 5017 Å: I-main resonances,” J. Phys. (Paris) 42, 1393–1411 (1981).
[Crossref]

S. Gerstenkorn and P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B–X) system,” J. Phys. (Paris) 46, 867–881 (1985).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Morinaga, “Hyperfine structure and hyperfine coupling constant of molecular iodine,” Jpn. J. Appl. Phys. 23, 774–775 (1984).
[Crossref]

Opt. Commun. (2)

S. Churassy, G. Grenet, M. L. Gaillard, and R. Bacis, “Hyperfine structure in the B–X transition of the iodine molecule near the head of the 12–0 band, by laser spectroscopy of a pure iodine supersonic jet,” Opt. Commun. 30, 41–46 (1979).
[Crossref]

M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985).
[Crossref]

Phys. Rev. A (1)

M. D. Levenson and A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 10–20 (1972).
[Crossref]

Phys. Rev. Lett. (2)

M. Kroll, “Hyperfine structure in the visible molecular-iodine absorption spectrum,” Phys. Rev. Lett. 23, 631–633 (1969).
[Crossref]

L. A. Hackel, K. H. Casleton, S. G. Kukolich, and S. Ezekiel, “Observation of magnetic octupole and scalar spin–spin interactions in I2using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975).
[Crossref]

Other (2)

S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode 14800–20000 cm−1 (Centre National de la Recherche Scientifique, Orsay, France, 1978).

E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge U. Press, Cambridge, 1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

General layout of the experimental setup: 4kch. MCS, 4,000-channel MCS; 32kch. MCS, 32,768-channel MCS.

Fig. 2
Fig. 2

Molecular-beam system. This system is composed of two vacuum chambers and a laser path. The 127I2 sample is enclosed in the external reservoir at room temperature. The fluorescence from the crossing point of laser light and molecular beam is focused onto the photocathode of a cooled photomultiplier by a well-adjusted spherical mirror.

Fig. 3
Fig. 3

Hyperfine spectrum of the laser-induced fluorescence from the molecular beam near the 13–1 bandhead. Assigned rovibronic transitions are also shown. The 300-MHz marker of the FPI simultaneously measured with a dual-input MCS is shown in the upper trace.

Fig. 4
Fig. 4

Expanded view of the 13–1 bandhead containing the R(0)–R(4) transitions. Five rovibronic transitions of R(0)–R(4) overlap because the rotational-energy differences between these rovibronic states are of the same order as the hyperfine splitting. The symbols p, q, and r indicate hyperfine transitions with ΔF = −1, 0, and +1, respectively, and the number following the symbol indicates the F quantum number of the X state. Some hyperfine transitions have uncertainties of the peak centers because of accidental overlap with other hyperfine transitions.

Fig. 5
Fig. 5

Hyperfine spectrum of R(5). This spectrum is well resolved because there is no overlap with other rovibronic transitions. For notation, see the caption of Fig. 4.

Fig. 6
Fig. 6

Experimentally determined hyperfine splittings derived from the analysis of R(5). (a) B(v′ = 13, J′ = 6) state. (b) X(v″ =1, J″ = 5) state. Ordinates are hyperfine splitting frequencies in units of megahertz, and hyperfine levels are classified by the F quantum number. The number between levels is the frequency splitting obtained from the difference between two related hyperfine transitions. The numbers in parentheses are the splitting estimated from determined hyperfine coupling constants. For the singlet and the doublet states, the assigned pseudo-spin is shown in square brackets under each hyperfine level.

Fig. 7
Fig. 7

Experimentally determined hyperfine coupling constants plotted for the rotational quantum number J. The values of eQq′ and eQq″ are plotted in megahertz in (a), and the values of μG′/I, Dt′, and Ds′ are plotted in kilohertz in (b). The dashed lines indicate the average values.

Fig. 8
Fig. 8

Comparison between experimental relative line strengths and theoretical estimates for the hyperfine components in the R(5) transition. Open circles and filled circles show the experimental values for the ΔF = ΔJ and Δ = 0 transitions and for the ΔF = 0 transitions, respectively. Solid lines indicate the theoretical values estimated from Eq. (3). Crosses show the theoretical values estimated from Eq. (4).

Tables (1)

Tables Icon

Table 1 Hyperfine Coupling Constants of Rovibronic States with J = 0–10 in the B(v′ = 13)–X(v″ = 1) Transition

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H HFS = H NEQ + H SR + H TSS + H SSS + H NMO + ,
L ( γ J F , γ J F ) = S ( γ J F , γ J F ) ( 2 J + 1 ) Ξ ( J , J ) γ J μ γ J 2 ,
L ( γ J + 1 F + 1 , γ J F ) = [ Σ I γ J + 1 F + 1 γ I J + 1 F + 1 × { ( F + J - I + 1 ) ( F + J - I + 2 ) ( F + J + I + 3 ) ( F + J + I + 2 ) 4 ( F + 1 ) ( J + 1 ) ( 2 J + 1 ) ( 2 J + 3 ) } 1 / 2 γ I J F γ J F ] 2 for Δ F = Δ J ,
L ( γ J + 1 F , γ J F ) = [ Σ I ( γ J + 1 F γ I J + 1 F × { ( 2 F + 1 ) ( F + J - 1 + 1 ) ( F - J + 1 ) ( F + J + 1 + 2 ) ( - F + J + I + 1 ) 4 F ( F + 1 ) ( J + 1 ) ( 2 J + 1 ) ( 2 J + 3 ) } 1 / 2 γ I J F γ J F ] 2 for Δ F = 0 ,
L ( γ J + 1 F - 1 , γ J F ) = [ Σ I γ J + 1 F - 1 γ I J + 1 F - 1 × ( - 1 ) { ( F - J + I - 1 ) ( F - J + I ) ( - F + J + I + 1 ) ( - F + J + I + 2 ) 4 F ( J + 1 ) ( 2 J + 1 ) ( 2 J + 3 ) } 1 / 2 γ I J F γ J F ] 2 for Δ F = - Δ J ,

Metrics