Abstract

An expression of the circularly polarized TEM01*-mode laser beam is obtained from the vector potential A, of which the scalar part becomes a linear combination of the complex multipole fields with the orders of (1, 0) and (0, 1). A light-scattering theory of the TEM01*-mode laser beam by a stratified sphere is developed, and the analytic formulas are derived for the radiation force and torque on a stratified particulate sphere located anywhere in the TEM01*-mode laser beam. Numerical calculations of the radiation force and torque are presented for a single-layered sphere case. The z-components of radiation force Fz and radiation torque Trot,z on a transparent hollow sphere with r1 = 0.5λ, r2 = 2.0λ in radii and N2 = 1.5 + i0.001 in refractive index are found to be 2 × 10−9 (dyne) and 0.75 × 10−14 (dyne cm), respectively, for a 1-W TEM01*-mode laser beam.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
    [CrossRef]
  2. G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
    [CrossRef]
  3. G. Rosen and C. Imbert, “The TEM01*-mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978).
    [CrossRef]
  4. G. Roosen and S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979).
    [CrossRef]
  5. G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979).
    [CrossRef]
  6. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [CrossRef]
  7. A. Ashkin, “The pressure of laser light,” Sci. Am. 226, 63–71 (1972).
    [CrossRef]
  8. A. Ashkin, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
    [CrossRef] [PubMed]
  9. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
    [CrossRef]
  10. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
    [CrossRef]
  11. A. Ashkin and J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976).
    [CrossRef]
  12. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
    [CrossRef]
  13. P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
    [CrossRef] [PubMed]
  14. A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
    [CrossRef] [PubMed]
  15. G. Grehan and G. Gouesbet, “Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light,” Appl. Opt. 19, 2485–2487 (1980).
    [CrossRef] [PubMed]
  16. P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
    [CrossRef]
  17. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
    [CrossRef] [PubMed]
  18. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
    [CrossRef] [PubMed]
  19. T. R. Lettieri, W. D. Jenkins, and D. A. Swyt, “Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization ratio,” Appl. Opt. 20, 2799–2805 (1981).
    [CrossRef] [PubMed]
  20. S. O. Park and S. S. Lee, “Forward far-field pattern of laser beam scattered by a water-suspended homogeneous sphere trapped by a focused laser beam,” J. Opt. Soc. Am. A 4, 417–422 (1987).
    [CrossRef]
  21. P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984.
    [CrossRef]
  22. S. Chang and S. S. Lee, “Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental mode laser beam,” J. Opt. Soc. Am. B 2, 1853–1860 (1985).
    [CrossRef]
  23. P. Debye, “Light pressure on spheres of any material,” Ann. Phys. 30, 57–136 (1909).
    [CrossRef]
  24. M. Kerker and D. D. Cooke, “Radiation pressure on absorbing spheres and photophoresis,” Appl. Opt. 12, 1378–1379 (1973).
    [CrossRef] [PubMed]
  25. M. Kerker, “Movement of small particles by light,” Am. Sci. 62, 92–98 (1974).
  26. J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a Gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
    [CrossRef]
  27. J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983).
    [CrossRef]
  28. S. Chang, “Mechanical effects of the focused laser beam on a dielectric particle and its application to the optical levitation,” Ph.D dissertation (Department of Physics, Korea Advanced Institute of Science and Technology, 1985).
  29. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
    [CrossRef]
  30. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp. 220–223.
  31. C. A. Kattawar and D. A. Hood, “Electromagnetic scattering from a spherical polydispersion of coated spheres,” Appl. Opt. 15, 1996–1999 (1976).
    [CrossRef] [PubMed]
  32. O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657–3660 (1981).
    [CrossRef] [PubMed]
  33. R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985).
    [CrossRef] [PubMed]
  34. R. Bhandari, “Tiny core or thin layer as a perturbation in scattering by a single-layered sphere,” J. Opt. Soc. Am. A 3, 319–328 (1986).
    [CrossRef]
  35. S. Y. Shin and L. B. Felsen, “Gaussian beam modes by multipoles with complex-source-points,” J. Opt. Soc. Am. 67, 699–700 (1977).
    [CrossRef]
  36. K. M. Luk and P. K. Yu, “Generation of Hermite–Gaussian beam modes by multipoles with complex-source-points,” J. Opt. Soc. Am. A 2, 1818–1820 (1985); “Complex-source-point theory of Gaussian beam and resonator,” J. Inst. Electr. Eng. Optoelectron. 2, 105–113 (1985).
    [CrossRef]
  37. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966); Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef] [PubMed]
  38. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 304–321, 328–335.
  39. A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 109–122.
  40. L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).
    [CrossRef]
  41. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 429.
  42. E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981), pp. 160–170.
  43. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 414–420, 485–486.
  44. W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976).
    [CrossRef] [PubMed]
  45. W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes, NCAR Tech. Note NCAR/TN–140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979), p.37.

1987 (1)

1986 (1)

1985 (3)

1984 (1)

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984.
[CrossRef]

1983 (1)

1982 (1)

J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a Gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

1981 (3)

1980 (3)

1979 (3)

G. Roosen and S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979).
[CrossRef]

G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

1978 (3)

G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
[CrossRef]

G. Rosen and C. Imbert, “The TEM01*-mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978).
[CrossRef]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

1977 (3)

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
[CrossRef]

S. Y. Shin and L. B. Felsen, “Gaussian beam modes by multipoles with complex-source-points,” J. Opt. Soc. Am. 67, 699–700 (1977).
[CrossRef]

1976 (4)

C. A. Kattawar and D. A. Hood, “Electromagnetic scattering from a spherical polydispersion of coated spheres,” Appl. Opt. 15, 1996–1999 (1976).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[CrossRef]

W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976).
[CrossRef] [PubMed]

1975 (1)

A. Ashkin, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[CrossRef] [PubMed]

1974 (2)

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

M. Kerker, “Movement of small particles by light,” Am. Sci. 62, 92–98 (1974).

1973 (1)

1972 (1)

A. Ashkin, “The pressure of laser light,” Sci. Am. 226, 63–71 (1972).
[CrossRef]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

1966 (1)

1951 (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

1909 (1)

P. Debye, “Light pressure on spheres of any material,” Ann. Phys. 30, 57–136 (1909).
[CrossRef]

Ackerman, T. P.

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
[CrossRef] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976).
[CrossRef]

A. Ashkin, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

A. Ashkin, “The pressure of laser light,” Sci. Am. 226, 63–71 (1972).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
[CrossRef]

Bhandari, R.

Chang, S.

S. Chang and S. S. Lee, “Optical torque exerted on a homogeneous sphere levitated in the circularly polarized fundamental mode laser beam,” J. Opt. Soc. Am. B 2, 1853–1860 (1985).
[CrossRef]

S. Chang, “Mechanical effects of the focused laser beam on a dielectric particle and its application to the optical levitation,” Ph.D dissertation (Department of Physics, Korea Advanced Institute of Science and Technology, 1985).

Chýlek, P.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
[CrossRef]

Cooke, D. D.

Crichton, J. H.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984.
[CrossRef]

Davis, L. W.

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Debye, P.

P. Debye, “Light pressure on spheres of any material,” Ann. Phys. 30, 57–136 (1909).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

Felsen, L. B.

Gouesbet, G.

Grehan, G.

Hood, D. A.

Imbert, C.

G. Rosen and C. Imbert, “The TEM01*-mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 429.

Jenkins, W. D.

Kattawar, C. A.

Kerker, M.

M. Kerker, “Movement of small particles by light,” Am. Sci. 62, 92–98 (1974).

M. Kerker and D. D. Cooke, “Radiation pressure on absorbing spheres and photophoresis,” Appl. Opt. 12, 1378–1379 (1973).
[CrossRef] [PubMed]

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp. 220–223.

Kiehl, J. T.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
[CrossRef]

Kim, J. S.

J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983).
[CrossRef]

J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a Gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

Ko, M. K. W.

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
[CrossRef]

Kogelnik, H.

Konopinski, E. J.

E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981), pp. 160–170.

Lee, S. S.

Lentz, W. J.

Lettieri, T. R.

Li, T.

Louvent, B. F. S.

G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
[CrossRef]

Luk, K. M.

Marston, P. L.

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984.
[CrossRef]

Park, S. O.

Roosen, G.

G. Roosen and S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979).
[CrossRef]

G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
[CrossRef]

Rosen, G.

G. Rosen and C. Imbert, “The TEM01*-mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978).
[CrossRef]

Shin, S. Y.

Siegman, A. E.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 304–321, 328–335.

Slansky, S.

G. Roosen and S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979).
[CrossRef]

G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 414–420, 485–486.

Swyt, D. A.

Toon, O. B.

Wiscombe, W. J.

W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes, NCAR Tech. Note NCAR/TN–140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979), p.37.

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 109–122.

Yu, P. K.

Am. Sci. (1)

M. Kerker, “Movement of small particles by light,” Am. Sci. 62, 92–98 (1974).

Ann. Phys. (1)

P. Debye, “Light pressure on spheres of any material,” Ann. Phys. 30, 57–136 (1909).
[CrossRef]

Appl. Opt. (10)

M. Kerker and D. D. Cooke, “Radiation pressure on absorbing spheres and photophoresis,” Appl. Opt. 12, 1378–1379 (1973).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19, 660–668 (1980).
[CrossRef] [PubMed]

G. Grehan and G. Gouesbet, “Optical levitation of a single particle to study the theory of the quasi-elastic scattering of light,” Appl. Opt. 19, 2485–2487 (1980).
[CrossRef] [PubMed]

C. A. Kattawar and D. A. Hood, “Electromagnetic scattering from a spherical polydispersion of coated spheres,” Appl. Opt. 15, 1996–1999 (1976).
[CrossRef] [PubMed]

O. B. Toon and T. P. Ackerman, “Algorithms for the calculation of scattering by stratified spheres,” Appl. Opt. 20, 3657–3660 (1981).
[CrossRef] [PubMed]

R. Bhandari, “Scattering coefficients for a multilayered sphere: analytic expressions and algorithms,” Appl. Opt. 24, 1960–1967 (1985).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
[CrossRef] [PubMed]

T. R. Lettieri, W. D. Jenkins, and D. A. Swyt, “Sizing of individual optically levitated evaporating droplets by measurement of resonances in the polarization ratio,” Appl. Opt. 20, 2799–2805 (1981).
[CrossRef] [PubMed]

H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966); Proc. IEEE 54, 1312–1329 (1966).
[CrossRef] [PubMed]

W. J. Lentz, “Generating Bessel functions in Mie scattering calculations using continued fractions,” Appl. Opt. 15, 668–671 (1976).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
[CrossRef]

Can. J. Phys. (1)

G. Roosen, “La levitation optique de spheres,” Can. J. Phys. 57, 1260–1279 (1979).
[CrossRef]

J. Appl. Phys. (1)

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys. 22, 1242–1246 (1951).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

J. S. Kim and S. S. Lee, “Radiation pressure on a dielectric sphere in a Gaussian laser beam,” Opt. Acta 29, 801–806 (1982).
[CrossRef]

Opt. Commun. (3)

G. Roosen, B. F. S. Louvent, and S. Slansky, “Étude de la pression de radiation exercée sur une sphere creuse transparente par un faisceau cylindrique,” Opt. Commun. 24, 116–121 (1978).
[CrossRef]

G. Rosen and C. Imbert, “The TEM01*-mode laser beam—a powerful tool for optical levitation of various types of spheres,” Opt. Commun. 26, 432–436 (1978).
[CrossRef]

G. Roosen and S. Slansky, “Influence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation,” Opt. Commun. 29, 341–346 (1979).
[CrossRef]

Phys. Rev. A (3)

P. L. Marston and J. H. Crichton, “Radiation torque on a sphere caused by a circularly polarized electromagnetic wave,” Phys. Rev. A 30, 2508–2516 (1984); “Radiation torque on a sphere illuminated with circularly polarized light,” J. Opt. Soc. Am. B 1, 528–529 (1984); “Radiation torque on a sphere illuminated with circularly polarized light and the angular momentum of the scattered radiation,” presented at the 1984 CRDC Conference on Obscuration Science and Aerosol Research, 1984.
[CrossRef]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978); “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
[CrossRef] [PubMed]

L. W. Davis, “Theory of electromagnetic beam,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin and J. M. Dziedzic, “Observation of a new nonlinear photoelectric effect using optical levitation,” Phys. Rev. Lett. 36, 267–270 (1976).
[CrossRef]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
[CrossRef]

Sci. Am. (1)

A. Ashkin, “The pressure of laser light,” Sci. Am. 226, 63–71 (1972).
[CrossRef]

Science (2)

A. Ashkin, “Optical levitation of liquid drops by radiation pressure,” Science 187, 1073–1075 (1975).
[CrossRef] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081–1088 (1980).
[CrossRef] [PubMed]

Other (9)

P. Chýlek, J. T. Kiehl, M. K. W. Ko, and A. Ashkin, “Surface waves in light scattering by spherical and non-spherical particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 153–164.
[CrossRef]

S. Chang, “Mechanical effects of the focused laser beam on a dielectric particle and its application to the optical levitation,” Ph.D dissertation (Department of Physics, Korea Advanced Institute of Science and Technology, 1985).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), pp. 220–223.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 429.

E. J. Konopinski, Electromagnetic Fields and Relativistic Particles (McGraw-Hill, New York, 1981), pp. 160–170.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), pp. 414–420, 485–486.

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1971), pp. 304–321, 328–335.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), pp. 109–122.

W. J. Wiscombe, Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes, NCAR Tech. Note NCAR/TN–140+STR (National Center for Atmospheric Research, Boulder, Colo., 1979), p.37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Light scattering of the TEM01*-mode laser beam by a stratified sphere. The origin of a coordinate system is at the center of the sphere, and rj is the outer radius of the jth shell.

Fig. 2
Fig. 2

The Cartesian components of radiation force (Fx, Fy, Fz) for a single-layer sphere of N2 = 1.5 + i0.001 as the sphere moves from the beam center to the point of xo = 2Wo and yo = zo = 0: (a) r1 = λ/2, r2 = 2λ; (b) r1 = λ, r2 = 2λ; and (c) r1 = 3λ/2, r2 = 2λ.

Fig. 3
Fig. 3

The Cartesian components of radiation force (Fx, Fy, Fz) for a single-layer sphere of N2 = 0.5 + i0.001 as the sphere moves from the beam center to the point of xo = 2Wo and yo = zo = 0: (a) r1 = λ/2, r2 = 2λ; (b) r1 = λ, r2 = 2λ; and (c) r1 = 3λ/2, r2 = 2λ.

Fig. 4
Fig. 4

The Cartesian components of radiation torque Trot,y and Trot,z about the center of mass of the sphere of N2 = 1.5 + i0.001 as it moves from the beam center to the point of xo = 2Wo and yo = zo = 0 on the focal plane. The thick solid curves are for r1 = λ/2, r2 = 2λ, the dashed curves are for r1 = λ, r2 = 2λ, and the thin solid curves are for r1 = 3λ/2, r2 = 2λ.

Fig. 5
Fig. 5

The Cartesian components of radiation torque Trot,y and Trot,z about the center of mass of the sphere of N2 = 0.5 + i0.001 as it moves from the beam center to the point of xo = 2Wo and yo = zo = 0 on the focal plane. The thick solid curves are for r1 = λ, r2 = 2λ, the dashed curves are for r1 = λ, r2 = 2λ, and the thin solid curves are for r1 = 3λ/2, r2 = 2λ.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E = ( x ^ + i y ^ ) ρ [ W ( z ) ] 2 exp { i k z + i k ρ 2 2 R ( z ) - ρ 2 [ W ( z ) ] 2 - i 2 ϕ ( z ) } ,
ψ ± = C ( d d x ± i d d y ) exp ( i k R ) i k R , R = [ ( x - x o ) 2 + ( y - y o ) 2 + ( z - z o - i b ) 2 ] 1 / 2 , b = k W o 2 / 2 ,
A = { ( x ^ + i y ^ ) ψ + left - circular polarization ( x ^ - i y ^ ) ψ - right - circular polarization , E = ( i / k ) × × A , H = × A .
E = C ( x ^ ± i y ^ ) 2 exp ( k b ) i b ρ [ W ( z ) ] 2 × exp { i k ( z - z o ) + i k ρ 2 2 R ( z - z o ) - ρ 2 [ W ( z - z o ) ] 2 - i 2 ϕ ( z - z o ) + i δ } ,
ψ ± = { C l , m G ± ( 1 ) ( l , m ) F l , m ( 0 ) for r < R o exp ( ± i Δ ) C l , m G ± ( 0 ) ( l , m ) F l , m ( 1 ) for R o < r exp ( ± i Δ ) , 0 < θ < π / 2 , C l , m G ± ( 0 ) ( l , m ) F l , m ( 2 ) for R o < r exp ( ± i Δ ) , π / 2 < θ π
G + ( η ) ( l , m ) = - k [ H ( η ) ( l - 1 , m - 1 ) 2 l - 1 + H ( η ) ( l + 1 , m - 1 ) 2 l + 3 ] G - ( η ) ( l , m ) = k [ ( l - m - 1 ) ( l - m ) H ( η ) ( l - 1 , m + 1 ) 2 l - 1 + ( l + m + 1 ) ( l + m + 2 ) H ( η ) ( l + 1 , m + 1 ) 2 l + 3 ] .
E i = i C l , m [ α ( η ) ( l , m ) M l , m ( σ ) + β ( η ) ( l , m ) N l , m ( σ ) ] , H i = C l , m [ α ( η ) ( l , m ) N l , m ( σ ) + β ( η ) ( l , m ) M l , m ( σ ) ] ,
E ( h + 1 ) = E i + E s , H ( h + 1 ) = H i + H s ,
E s = i C l , m [ a l α ( 1 ) ( l , m ) M l , m ( 1 ) + b l β ( 1 ) ( l , m ) N l , m ( 1 ) ] , H s = C l , m [ a l α ( 1 ) ( l , m ) N l , m ( 1 ) + b l β ( 1 ) ( l , m ) M l , m ( 1 ) ] ,
E ( j ) = i C ( - 1 ) h - j N j l , m { α ( 1 ) ( l , m ) × [ a l ( j ) M l , m ( 0 , j ) - c l ( j ) M l , m ( 3 , j ) ] + β ( 1 ) ( l , m ) [ b l ( j ) N l , m ( 0 , j ) - d l ( j ) N l , m ( 3 , j ) ] } , H ( j ) = C ( - 1 ) h - j N j 2 l , m { α ( 1 ) ( l , m ) × [ a l ( j ) N l , m ( 0 , j ) - c l ( j ) N l , m ( 3 , j ) ] + β ( 1 ) ( l , m ) [ b l ( j ) M l , m ( 0 , j ) - d l ( j ) M l , m ( 3 , j ) ] } .
[ E ( j + 1 ) - E ( j ) ] × r ^ = 0 , [ H ( j + 1 ) - H ( j ) ] × r ^ = 0.
F = S d s < M > , T rot = - S d s < M > × r ,
M l , m ( σ , j ) = × [ r F l , m ( σ , j ) ] , N l , m ( σ , j ) = 1 N j k × × [ r F l , m ( σ , j ) ] , F l , m ( σ , j ) = Z l ( σ ) ( N j k r ) P l m ( cos Θ ) exp ( i m ϕ )             ( σ = 0 , 1 , 2 , 3 ) ,
M l , m ( σ , j ) = 1 N j k × N l , m ( σ , j ) , N l , m ( σ , j ) = 1 N j k × M l , m ( σ , j ) .
1 C 2 = c 4 k 2 l , l ( Im [ - α ( 1 ) ( l , 2 ) α ( 1 ) * ( l , 2 ) + β ( 1 ) ( l , 2 ) × β ( 1 ) * ( l , 2 ) ] P l 2 ( 0 ) d P l 2 ( 0 ) d Θ l ( l + 1 ) sin [ l - l ) ( π / 2 ) ] ( l - l ) ( l + l + 1 ) + Re [ β ( 1 ) ( l , 2 ) α ( 1 ) * ( l , 2 ) + β ( 1 ) ( l , 2 ) α ( 1 ) * ( l , 2 ) ] × P l 2 ( 0 ) P l 2 ( 0 ) 2 l ( l + 1 ) 2 l + 1 × { ( l + 1 ) sin [ ( l - l + 1 ) ( π / 2 ) ] ( l + l ) ( l - l + 1 ) - l sin [ ( l - l - 1 ) ( π / 2 ) ] l ( l + 1 ) - ( l + 1 ) ( l + 2 ) } ) × 10 7 exp ( 2 k b ) k 2 b 4 ( 2 × 10 9 dyne - 1 ) .

Metrics