Abstract

We report on measurements of the nonresonant third-order susceptibilities of the gases water vapor, n-butane, and propane. The susceptibilities were obtained from scanned coherent anti-Stokes Raman spectroscopy (CARS) spectra of binary gas mixtures containing N2 and each species of interest. The resonant susceptibility of N2, which served as a calibration standard for the measurements, was calculated using a modified exponential-gap model. Raman transition linewidths for the model were based on separate measurements by inverse Raman spectroscopy. We separately measured the nonresonant contributions from distant Raman transitions, predominantly C–H stretch modes. For parallel-polarized CARS configurations, the total effective nonresonant susceptibilities for propane, n-butane, and water vapor, respectively, were found to be 11.5 ± 1.4, 14.4 ± 1.8, and 2.2 ± 0.3 times that of N2 [using 8.5 × 10−18 (cm3/erg)/amagat].

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, R. J. Hall and A. C. Eckbreth, in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, New York, 1984), pp. 213–309.
  2. R. J. Hall and L. R. Boedeker, “CARS thermometry in fuel-rich combustion zones,” Appl. Opt. 23, 1340 (1984).
    [CrossRef] [PubMed]
  3. The method requires data covering a wider spectral range than is sometimes available; with insufficient coverage, changes in temperature cannot be distinguished from changes in χnr.
  4. W. G. Rado, “The nonlinear third order dielectric susceptibility coefficients of gases and optical third harmonic generation,” Appl. Phys. Lett. 11, 123 (1967).
    [CrossRef]
  5. F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
    [CrossRef]
  6. A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175 (1981).
    [CrossRef]
  7. T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
    [CrossRef]
  8. G. J. Rosasco and W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281 (1985).
    [CrossRef] [PubMed]
  9. R. L. Farrow and L. A. Rahn, “Interpreting CARS spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903 (1985).
    [CrossRef]
  10. R. L. Farrow, P. L. Mattern, and L. A. Rahn, “Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame,” Appl. Opt. 21, 3119 (1982).
    [CrossRef] [PubMed]
  11. R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, “Species concentration measurements using CARS with non-resonant susceptibility normalization,” Appl. Opt. 24, 2241 (1985).
    [CrossRef]
  12. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164 (1986).
    [CrossRef]
  13. L. A. Rahn, R. L. Farrow, and R. E. Palmer, “Nitrogen Q-branch broadening by propane, n-butane, and water vapor,” to be submitted to J. Opt. Soc. Am. B.
  14. R. L. Schmitt and L. A. Rahn, “Diode-laser-pumped Nd:YAG laser injection seeding system,” Appl. Opt. 25, 629 (1986).
    [CrossRef] [PubMed]
  15. The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.
  16. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
    [CrossRef]
  17. R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
    [CrossRef]
  18. R. L. Farrow, R. Trebino, and R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331 (1987).
    [CrossRef] [PubMed]
  19. C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).
  20. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springler-Verlag, New York, 1979), pp. 123–201.
    [CrossRef]
  21. Y. A. Yuratich, “Effects of laser linewidth on CARS,” Mol. Phys. 39, 625 (1979).
    [CrossRef]
  22. R. J. Hall, “Intensity convolutions of CARS spectra,” Opt. Commun. 52, 360 (1985).
    [CrossRef]
  23. G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
    [CrossRef]
  24. J. Martin, “Raman intensities of propane in the gas phase,” J. Raman Spectrosc. 16, 139 (1985).
    [CrossRef]
  25. K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.
  26. D. A. Stephenson, “Raman cross sections of selected hydrocarbons and Freons,” J. Quant. Radiat. Transfer 14, 1291 (1974).
    [CrossRef]
  27. R. L. Farrow and R. P. Lucht, “High-resolution CARS for combustion diagnostics,” in Proceedings of the Tenth International Conference on Raman Spectroscopy, W. L. Peticolas and B. Hudson, eds. (U. Oregon Press, Eugene, Ore.1986), pp. 15:27–15:28.
  28. S. La and L. E. Harris, “Relative value of the third-order non-resonant susceptibility of water,” Appl. Opt. 25, 4501 (1986).
    [CrossRef]
  29. J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826 (1979).
    [CrossRef]
  30. G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251 (1986).
    [CrossRef]
  31. M. P. Bogaard and B. J. Orr, in Molecular Structure and Properties, A. D. Buckingham, ed., Vol. 2 of MTP International Review of Science, Physical Chemistry Series Two (Butterworth, London, 1975), pp. 149–194.
  32. D. P. Shelton and A. D. Buckingham, “Optical second-harmonic generation in gases with a low power laser,” Phys. Rev. A 26, 2787 (1982).
    [CrossRef]
  33. R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

1987 (2)

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
[CrossRef]

R. L. Farrow, R. Trebino, and R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331 (1987).
[CrossRef] [PubMed]

1986 (4)

1985 (5)

J. Martin, “Raman intensities of propane in the gas phase,” J. Raman Spectrosc. 16, 139 (1985).
[CrossRef]

R. J. Hall, “Intensity convolutions of CARS spectra,” Opt. Commun. 52, 360 (1985).
[CrossRef]

G. J. Rosasco and W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281 (1985).
[CrossRef] [PubMed]

R. L. Farrow and L. A. Rahn, “Interpreting CARS spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903 (1985).
[CrossRef]

R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, “Species concentration measurements using CARS with non-resonant susceptibility normalization,” Appl. Opt. 24, 2241 (1985).
[CrossRef]

1984 (1)

1983 (2)

T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

1982 (2)

R. L. Farrow, P. L. Mattern, and L. A. Rahn, “Comparison between CARS and corrected thermocouple temperature measurements in a diffusion flame,” Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

D. P. Shelton and A. D. Buckingham, “Optical second-harmonic generation in gases with a low power laser,” Phys. Rev. A 26, 2787 (1982).
[CrossRef]

1981 (1)

A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

1980 (1)

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
[CrossRef]

1979 (2)

Y. A. Yuratich, “Effects of laser linewidth on CARS,” Mol. Phys. 39, 625 (1979).
[CrossRef]

J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826 (1979).
[CrossRef]

1974 (1)

D. A. Stephenson, “Raman cross sections of selected hydrocarbons and Freons,” J. Quant. Radiat. Transfer 14, 1291 (1974).
[CrossRef]

1973 (1)

F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
[CrossRef]

1972 (1)

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).

1967 (1)

W. G. Rado, “The nonlinear third order dielectric susceptibility coefficients of gases and optical third harmonic generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

Boedeker, L. R.

Bogaard, M. P.

M. P. Bogaard and B. J. Orr, in Molecular Structure and Properties, A. D. Buckingham, ed., Vol. 2 of MTP International Review of Science, Physical Chemistry Series Two (Butterworth, London, 1975), pp. 149–194.

Buckingham, A. D.

D. P. Shelton and A. D. Buckingham, “Optical second-harmonic generation in gases with a low power laser,” Phys. Rev. A 26, 2787 (1982).
[CrossRef]

Clark, G. L.

DeMartini, F.

F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
[CrossRef]

See, for example, R. J. Hall and A. C. Eckbreth, in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, New York, 1984), pp. 213–309.

Farrow, R. L.

Ferguson, C. R.

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

Goldman, L. M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).

Gough, K. M.

K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.

Green, R. M.

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

Greenhalgh, D. A.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
[CrossRef]

Hall, R. J.

R. J. Hall, “Intensity convolutions of CARS spectra,” Opt. Commun. 52, 360 (1985).
[CrossRef]

R. J. Hall and L. R. Boedeker, “CARS thermometry in fuel-rich combustion zones,” Appl. Opt. 23, 1340 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
[CrossRef]

See, for example, R. J. Hall and A. C. Eckbreth, in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, New York, 1984), pp. 213–309.

Harris, L. E.

Hou, S.-Y.

T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Hurst, W. S.

G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251 (1986).
[CrossRef]

G. J. Rosasco and W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281 (1985).
[CrossRef] [PubMed]

G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Kee, R. J.

The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.

Klöckner, H. W.

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springler-Verlag, New York, 1979), pp. 123–201.
[CrossRef]

Koszykowski, M. L.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
[CrossRef]

La, S.

Lapp, M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).

Lempert, W.

G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Lucht, R. P.

R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, “Species concentration measurements using CARS with non-resonant susceptibility normalization,” Appl. Opt. 24, 2241 (1985).
[CrossRef]

R. L. Farrow and R. P. Lucht, “High-resolution CARS for combustion diagnostics,” in Proceedings of the Tenth International Conference on Raman Spectroscopy, W. L. Peticolas and B. Hudson, eds. (U. Oregon Press, Eugene, Ore.1986), pp. 15:27–15:28.

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

Lunden, T.

T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Martin, J.

J. Martin, “Raman intensities of propane in the gas phase,” J. Raman Spectrosc. 16, 139 (1985).
[CrossRef]

Mattern, P. L.

Miller, C. K.

J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826 (1979).
[CrossRef]

Murphy, W. F.

K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.

Nibler, J. W.

T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Nørby Svendsen, E.

K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.

Orr, B. J.

M. P. Bogaard and B. J. Orr, in Molecular Structure and Properties, A. D. Buckingham, ed., Vol. 2 of MTP International Review of Science, Physical Chemistry Series Two (Butterworth, London, 1975), pp. 149–194.

Palmer, R. E.

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
[CrossRef]

R. L. Farrow, R. Trebino, and R. E. Palmer, “High-resolution CARS measurements of temperature profiles and pressure in a tungsten lamp,” Appl. Opt. 26, 331 (1987).
[CrossRef] [PubMed]

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164 (1986).
[CrossRef]

R. L. Farrow, R. P. Lucht, G. L. Clark, and R. E. Palmer, “Species concentration measurements using CARS with non-resonant susceptibility normalization,” Appl. Opt. 24, 2241 (1985).
[CrossRef]

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

L. A. Rahn, R. L. Farrow, and R. E. Palmer, “Nitrogen Q-branch broadening by propane, n-butane, and water vapor,” to be submitted to J. Opt. Soc. Am. B.

Penney, C. M.

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).

Rado, W. G.

W. G. Rado, “The nonlinear third order dielectric susceptibility coefficients of gases and optical third harmonic generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

Rahn, L. A.

Rosasco, G. J.

G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251 (1986).
[CrossRef]

G. J. Rosasco and W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281 (1985).
[CrossRef] [PubMed]

G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Santomato, E.

F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
[CrossRef]

Schmitt, R. L.

Schrötter, H. W.

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springler-Verlag, New York, 1979), pp. 123–201.
[CrossRef]

Shelton, D. P.

D. P. Shelton and A. D. Buckingham, “Optical second-harmonic generation in gases with a low power laser,” Phys. Rev. A 26, 2787 (1982).
[CrossRef]

Simoni, F.

F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
[CrossRef]

Stephenson, D. A.

D. A. Stephenson, “Raman cross sections of selected hydrocarbons and Freons,” J. Quant. Radiat. Transfer 14, 1291 (1974).
[CrossRef]

Stroyer-Hansen, T.

K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.

Teets, R. E.

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

Trebino, R.

Verdieck, J. F.

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
[CrossRef]

Ward, J. F.

J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826 (1979).
[CrossRef]

Yuratich, Y. A.

Y. A. Yuratich, “Effects of laser linewidth on CARS,” Mol. Phys. 39, 625 (1979).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

W. G. Rado, “The nonlinear third order dielectric susceptibility coefficients of gases and optical third harmonic generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

Chem. Phys. Lett. (2)

L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513 (1987).
[CrossRef]

G. J. Rosasco, W. Lempert, and W. S. Hurst, “Line interference effects in the vibrational Q-branch spectra of N2and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Combust. Sci. Technol. (1)

A. C. Eckbreth and R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. Chem. Phys. (1)

T. Lunden, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Quant. Radiat. Transfer (1)

D. A. Stephenson, “Raman cross sections of selected hydrocarbons and Freons,” J. Quant. Radiat. Transfer 14, 1291 (1974).
[CrossRef]

J. Raman Spectrosc. (1)

J. Martin, “Raman intensities of propane in the gas phase,” J. Raman Spectrosc. 16, 139 (1985).
[CrossRef]

Mol. Phys. (1)

Y. A. Yuratich, “Effects of laser linewidth on CARS,” Mol. Phys. 39, 625 (1979).
[CrossRef]

Nature (1)

C. M. Penney, L. M. Goldman, and M. Lapp, “Raman scattering cross sections,” Nature 235, 110 (1972).

Opt. Commun. (3)

R. J. Hall, “Intensity convolutions of CARS spectra,” Opt. Commun. 52, 360 (1985).
[CrossRef]

R. J. Hall, J. F. Verdieck, and A. C. Eckbreth, “Pressure-induced narrowing of the CARS spectrum of N2,” Opt. Commun. 35, 69 (1980).
[CrossRef]

F. DeMartini, F. Simoni, and E. Santomato, “High-resolution nonlinear susceptibility of H2near the Q(1) vibrational resonance,” Opt. Commun. 9, 176 (1973).
[CrossRef]

Phys. Rev. A (3)

G. J. Rosasco and W. S. Hurst, “Measurement of resonant and nonresonant third order nonlinear susceptibilities by coherent Raman spectroscopy,” Phys. Rev. A 32, 281 (1985).
[CrossRef] [PubMed]

J. F. Ward and C. K. Miller, “Measurements of nonlinear optical polarizabilities for twelve small molecules,” Phys. Rev. A 19, 826 (1979).
[CrossRef]

D. P. Shelton and A. D. Buckingham, “Optical second-harmonic generation in gases with a low power laser,” Phys. Rev. A 26, 2787 (1982).
[CrossRef]

Other (9)

R. P. Lucht, R. M. Green, R. E. Palmer, R. E. Teets, and C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine: I. CARS temperature measurements,” Combust. Sci. Technol. (to be published).

M. P. Bogaard and B. J. Orr, in Molecular Structure and Properties, A. D. Buckingham, ed., Vol. 2 of MTP International Review of Science, Physical Chemistry Series Two (Butterworth, London, 1975), pp. 149–194.

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springler-Verlag, New York, 1979), pp. 123–201.
[CrossRef]

K. M. Gough, W. F. Murphy, T. Stroyer-Hansen, and E. Nørby Svendsen, “Raman trace scattering intensity parameters for propane,” submitted to J. Chem. Phys.

R. L. Farrow and R. P. Lucht, “High-resolution CARS for combustion diagnostics,” in Proceedings of the Tenth International Conference on Raman Spectroscopy, W. L. Peticolas and B. Hudson, eds. (U. Oregon Press, Eugene, Ore.1986), pp. 15:27–15:28.

See, for example, R. J. Hall and A. C. Eckbreth, in Laser Applications, J. F. Ready and R. K. Erf, eds. (Academic, New York, 1984), pp. 213–309.

The method requires data covering a wider spectral range than is sometimes available; with insufficient coverage, changes in temperature cannot be distinguished from changes in χnr.

The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.

L. A. Rahn, R. L. Farrow, and R. E. Palmer, “Nitrogen Q-branch broadening by propane, n-butane, and water vapor,” to be submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectrum of the N2Q branch (solid line) and fit (dashed line) from a gas mixture of 5.1 ± 0.1 mol. % N2 in C3H8 at 296 K and a pressure of 600 Torr. The spectral resolution was 0.03 cm−1, sufficient to resolve the Raman line shapes fully. A polarizer angle of 600 was used to suppress nonresonant electronic intensities, so that the remaining background was due to off-resonant C3H8 Raman transitions.

Fig. 2
Fig. 2

Raman linewidths of N2 measured with IRS (symbols) compared with linewidth model predictions (solid curves). The models were obtained by fitting fully resolved CARS spectra. The self-broadening coefficients are from Ref. 23.

Fig. 3
Fig. 3

Spectrum of the N2Q branch (solid line) and fit (dashed line) at various pressures, in the same gas as for Fig. 1. Here, the polarizer angle was 50°.

Fig. 4
Fig. 4

Spectrum of the N2Q branch (solid line) and fit (dashed line) from the postflame gases of a stoichiometric H2–N2–O2 flame. The flow rate for this scan was chosen to produce 67% H2O and 33% N2 in the measurement region. The temperature was measured separately by fitting longer spectral scans of the Q branch.

Tables (2)

Tables Icon

Table 1 Modified Exponential-Gap Parameters for N2 Linewidths

Tables Icon

Table 2 Nonresonant Susceptibilities [10−18 (cm3/erg)/amagat]

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

3 χ 1111 ( 3 ) ( ω ) = N α · G ˜ ( ω ) - 1 · p ˜ · α .
α j = c 2 ω 1 2 ( d σ d Ω ) j 1 / 2 ,
G ˜ ( ω ) = - ω I ˜ + ω ˜ R + 2 π c P i γ ˜ ,
- γ j j = i j γ i j = Γ j / 2 ,
γ i j = α ( 1 + 1.5 E i / k T δ 1 + 1.5 E i / k T ) 2 exp ( - β Δ E i j / k T ) .
I ( ω ) = 3 χ 1111 , N 2 ( 3 ) ( ω ) Φ ( ρ N 2 ) + 3 χ 1111 , buf ( 3 ) ( ω ) Φ ( ρ buf ) + χ nr , N 2 ( 3 ) Φ ( 1 / 3 ) + χ nr , buf ( 3 ) Φ ( 1 / 3 ) 2 .
Φ ( ρ ) = cos θ cos + ρ sin θ sin ϕ .
3 χ 1111 , buf ( 3 ) ( ω ) N c 4 ω 1 4 ( d σ d Ω ) tot 1 ω R avg - ω .

Metrics