Abstract

Second-harmonic generation (SHG) is theoretically investigated in weakly guiding organic crystal-cored fibers (OCCF’s), where the crystal axes are parallel to the corresponding waveguiding ones. The analysis made for all acentric point groups clearly singled out core orientations favorable for efficient SHG (under appropriate phase-matching conditions). The analysis of molecular orientations maximizing the relevant nonlinear (NL) coefficients shows that NL organic materials optimized for efficient SHG in the bulk are also optimized for efficient SHG in OCCF’s. We discuss the growth methods of OCCF’s and present the results obtained when two organic materials, N-(4-nitrophenyl)-(L)-prolinol (NPP) and N-(4-nitrophenyl)-N-methylamino-aceto-nitrile (NPAN), are used. The crystal structure of the new material NPAN as well as related NL properties are presented for the first time to the authors’ knowledge. The nonlinear properties of NPAN are comparable with those of the best phase-matchable organic material, NPP.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985); H. P. Nolting and R. Ulrich, eds., Integrated Optics, Vol. 48 of Springer Series in Optical Sciences (Springer, New York, 1985); Special issue on integrated optics, IEEE J. Quantum Electron. QE-22(1986); S. Sriram, ed., Integrated Optical Circuit Engineering II, Proc. Soc. Photo-Opt. Instrum. Eng. 578(1985).
    [CrossRef]
  2. D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983).
    [CrossRef]
  3. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vols. 1 and 2.
  4. W. R. Donaldson and C. L. Tang, “Urea optical parametric oscillator,” Appl. Phys. Lett. 44, 25–27 (1984).
    [CrossRef]
  5. J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- and two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
    [CrossRef]
  6. See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  7. D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).
  8. N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972).
  9. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  10. P. Vandenbulcke and P. E. Lagasse, “Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides,” Electron. Lett. 12, 120–121 (1976).
    [CrossRef]
  11. J. R. Cozens, “Propagation in cylindrical fibres with anisotropic crystal cores,” Electron. Lett. 12, 413–415 (1976).
    [CrossRef]
  12. A. Yariv, “The coupled-mode formalism in guided-wave optics,” in Fiber and Integrated Optics, D. B. Ostrovsky, ed., NATO Ser. B41(Plenum, New York, 1979).
    [CrossRef]
  13. H. Ito and H. Inaba, “Efficient phase-matched second-harmonic generation method in four-layered optical-waveguide structure,” Opt. Lett. 2, 139–141 (1978).
    [CrossRef] [PubMed]
  14. P. V. Vidakovic, “Growth of nonlinear organic waveguides,” in Proceedings of E-MRS XIII[J. Phys. (Paris) (June1986)], pp. 387–400.
  15. B. K. Nayar, R. Kashyap, and K. I. White, “Design of efficient organic crystal cored fibres for parametric interactions: phase matching requirements,” in Integrated Optical Circuit Engineering III, R. Th. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651(1986).
    [CrossRef]
  16. P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.
  17. S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
    [CrossRef]
  18. J. L. Stevenson and R. B. Dyott, “Optical-fibre waveguide with a single-crystal core,” Electron. Lett. 10, 449–450 (1974); J. L. Stevenson, “Growth and characterization of single crystal optical fibre waveguides-meta-nitroaniline,” J. Cryst. Growth 37, 116–128 (1977).
    [CrossRef]
  19. F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
    [CrossRef]
  20. B. K. Nayar, “Optical second harmonic generation in crystal cored fibers,” in Digest of the Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1982), paper ThA2; B. K. Nayar, “Nonlinear optical interactions in organic crystal cored fibers,” in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983), pp. 153–156.
    [CrossRef]
  21. G. I. Stegeman and C. Liao, “Efficient SHG of IR radiation by guided waves in MNA,” Appl. Opt. 22, 2518–2519 (1983); K. Sasaki, T. Kinoshita, and N. Karasawa, “Second harmonic generation of 2-methyl-4-nitroaniline by a Nd3+:YAG laser with a tapered slab-type optical waveguide,” Appl. Phys. Lett. 45, 333–334 (1984); H. Itoh, K. Hotta, H. Takara, and K. Sasaki, “The growth of 2-methyl-4-nitroaniline single crystalline thin films for phase-matched frequency-doubling,” Opt. Commun. 59, 299–303 (1986); H. Itoh, K. Hotta, H. Takara, and K. Sasaki, “Frequency doubling of a Nd3+:YAG laser by a MNA single crystal thin films on a slab-type optical glass waveguide,” Appl. Opt. 25, 1491–1494 (1986).
    [CrossRef] [PubMed]
  22. S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.
  23. G. H. Hewig and K. Jain, “Frequency doubling in an organic waveguide,” Opt. Commun. 47, 347–350 (1983).
    [CrossRef]
  24. J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.
  25. D. W. G. Balletyne and S. M. Al-Shukry, “The growth of single crystals of electro-optic organic compounds in monomode optical fibres,” J. Cryst. Growth 68, 651–655 (1984).
    [CrossRef]
  26. B. A. Frentz, Structure Determination Package (Frentz, College Station, Tex.; Enraf-Nonius, Delft, The Netherlands, 1982).
  27. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).
  28. K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
    [CrossRef]
  29. M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).
  30. J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
    [CrossRef]
  31. G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
    [CrossRef]
  32. R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
    [CrossRef]
  33. F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
    [CrossRef] [PubMed]
  34. J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986).
  35. M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, “Quadratic nonlinear properties of N-(4-nitro-phenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study,” J. Opt. Soc. Am. B 4, 977–986 (1987); J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
    [CrossRef]
  36. I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
    [CrossRef]

1987 (1)

1986 (3)

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
[CrossRef]

P. V. Vidakovic, “Growth of nonlinear organic waveguides,” in Proceedings of E-MRS XIII[J. Phys. (Paris) (June1986)], pp. 387–400.

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

1985 (1)

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985); H. P. Nolting and R. Ulrich, eds., Integrated Optics, Vol. 48 of Springer Series in Optical Sciences (Springer, New York, 1985); Special issue on integrated optics, IEEE J. Quantum Electron. QE-22(1986); S. Sriram, ed., Integrated Optical Circuit Engineering II, Proc. Soc. Photo-Opt. Instrum. Eng. 578(1985).
[CrossRef]

1984 (4)

W. R. Donaldson and C. L. Tang, “Urea optical parametric oscillator,” Appl. Phys. Lett. 44, 25–27 (1984).
[CrossRef]

S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

D. W. G. Balletyne and S. M. Al-Shukry, “The growth of single crystals of electro-optic organic compounds in monomode optical fibres,” J. Cryst. Growth 68, 651–655 (1984).
[CrossRef]

1983 (2)

1982 (1)

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- and two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

1981 (3)

G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
[CrossRef]

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
[CrossRef]

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

1978 (1)

1977 (1)

F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
[CrossRef]

1976 (2)

P. Vandenbulcke and P. E. Lagasse, “Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides,” Electron. Lett. 12, 120–121 (1976).
[CrossRef]

J. R. Cozens, “Propagation in cylindrical fibres with anisotropic crystal cores,” Electron. Lett. 12, 413–415 (1976).
[CrossRef]

1974 (1)

J. L. Stevenson and R. B. Dyott, “Optical-fibre waveguide with a single-crystal core,” Electron. Lett. 10, 449–450 (1974); J. L. Stevenson, “Growth and characterization of single crystal optical fibre waveguides-meta-nitroaniline,” J. Cryst. Growth 37, 116–128 (1977).
[CrossRef]

1961 (1)

K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
[CrossRef]

Al-Shukry, S. M.

D. W. G. Balletyne and S. M. Al-Shukry, “The growth of single crystals of electro-optic organic compounds in monomode optical fibres,” J. Cryst. Growth 68, 651–655 (1984).
[CrossRef]

Babai, F. H.

F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
[CrossRef]

Badan, J.

P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.

Balletyne, D. W. G.

D. W. G. Balletyne and S. M. Al-Shukry, “The growth of single crystals of electro-optic organic compounds in monomode optical fibres,” J. Cryst. Growth 68, 651–655 (1984).
[CrossRef]

Barzoukas, M.

Brun, A.

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

Burke, J. J.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972).

Colapietro, M.

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

Coquillay, M.

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

Cozens, J. R.

J. R. Cozens, “Propagation in cylindrical fibres with anisotropic crystal cores,” Electron. Lett. 12, 413–415 (1976).
[CrossRef]

Declercq, J. P.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Domenicano, A.

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

Donaldson, W. R.

W. R. Donaldson and C. L. Tang, “Urea optical parametric oscillator,” Appl. Phys. Lett. 44, 25–27 (1984).
[CrossRef]

Donohue, J.

K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
[CrossRef]

Dyott, R. B.

F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
[CrossRef]

J. L. Stevenson and R. B. Dyott, “Optical-fibre waveguide with a single-crystal core,” Electron. Lett. 10, 449–450 (1974); J. L. Stevenson, “Growth and characterization of single crystal optical fibre waveguides-meta-nitroaniline,” J. Cryst. Growth 37, 116–128 (1977).
[CrossRef]

Fiske, S. J.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Fork, R. L.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
[CrossRef]

Fremaux, P.

Frentz, B. A.

B. A. Frentz, Structure Determination Package (Frentz, College Station, Tex.; Enraf-Nonius, Delft, The Netherlands, 1982).

Garito, A. F.

G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
[CrossRef]

Germain, G.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Goldish, E.

K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
[CrossRef]

Grangier, P.

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

Greene, B. I.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
[CrossRef]

Hewig, G. H.

G. H. Hewig and K. Jain, “Frequency doubling in an organic waveguide,” Opt. Commun. 47, 347–350 (1983).
[CrossRef]

Hierle, R.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.

P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.

Hull, S. E.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Inaba, H.

Ito, H.

Jain, K.

G. H. Hewig and K. Jain, “Frequency doubling in an organic waveguide,” Opt. Commun. 47, 347–350 (1983).
[CrossRef]

Josse, D.

Kapany, N. S.

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972).

Kashyap, R.

B. K. Nayar, R. Kashyap, and K. I. White, “Design of efficient organic crystal cored fibres for parametric interactions: phase matching requirements,” in Integrated Optical Circuit Engineering III, R. Th. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651(1986).
[CrossRef]

Kawachi, M.

S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
[CrossRef]

Kobayashi, M.

S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
[CrossRef]

Lagasse, P. E.

P. Vandenbulcke and P. E. Lagasse, “Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides,” Electron. Lett. 12, 120–121 (1976).
[CrossRef]

Ledoux, I.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Lessinger, L.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Liao, C.

Limpscomb, G. E.

G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Main, P.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Manabe, A.

S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.

Marciante, C.

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

Marcuse, D.

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

Morley, J. O.

Narang, R. S.

G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
[CrossRef]

Nayar, B. K.

B. K. Nayar, “Optical second harmonic generation in crystal cored fibers,” in Digest of the Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1982), paper ThA2; B. K. Nayar, “Nonlinear optical interactions in organic crystal cored fibers,” in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983), pp. 153–156.
[CrossRef]

B. K. Nayar, R. Kashyap, and K. I. White, “Design of efficient organic crystal cored fibres for parametric interactions: phase matching requirements,” in Integrated Optical Circuit Engineering III, R. Th. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651(1986).
[CrossRef]

Nicoud, J. F.

M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, “Quadratic nonlinear properties of N-(4-nitro-phenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study,” J. Opt. Soc. Am. B 4, 977–986 (1987); J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986).

Oudar, J. L.

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- and two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Perigaud, A.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.

Portalone, G.

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

Roger, G.

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

Salin, F.

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985); H. P. Nolting and R. Ulrich, eds., Integrated Optics, Vol. 48 of Springer Series in Optical Sciences (Springer, New York, 1985); Special issue on integrated optics, IEEE J. Quantum Electron. QE-22(1986); S. Sriram, ed., Integrated Optical Circuit Engineering II, Proc. Soc. Photo-Opt. Instrum. Eng. 578(1985).
[CrossRef]

Shank, C. V.

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Stegeman, G. I.

Stevenson, J. L.

J. L. Stevenson and R. B. Dyott, “Optical-fibre waveguide with a single-crystal core,” Electron. Lett. 10, 449–450 (1974); J. L. Stevenson, “Growth and characterization of single crystal optical fibre waveguides-meta-nitroaniline,” J. Cryst. Growth 37, 116–128 (1977).
[CrossRef]

Takahashi, Y.

S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.

Tanaka, S.

S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.

Tang, C. L.

W. R. Donaldson and C. L. Tang, “Urea optical parametric oscillator,” Appl. Phys. Lett. 44, 25–27 (1984).
[CrossRef]

Tomaru, S.

S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
[CrossRef]

Trueblood, K. N.

K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
[CrossRef]

Twieg, R. J.

J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986).

Umegaki, S.

S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.

Vandenbulcke, P.

P. Vandenbulcke and P. E. Lagasse, “Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides,” Electron. Lett. 12, 120–121 (1976).
[CrossRef]

Vidakovic, P.

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
[CrossRef]

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.

Vidakovic, P. V.

P. V. Vidakovic, “Growth of nonlinear organic waveguides,” in Proceedings of E-MRS XIII[J. Phys. (Paris) (June1986)], pp. 387–400.

P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.

White, E. A. D.

F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
[CrossRef]

White, K. I.

B. K. Nayar, R. Kashyap, and K. I. White, “Design of efficient organic crystal cored fibres for parametric interactions: phase matching requirements,” in Integrated Optical Circuit Engineering III, R. Th. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651(1986).
[CrossRef]

Wolfson, M. M.

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Yariv, A.

A. Yariv, “The coupled-mode formalism in guided-wave optics,” in Fiber and Integrated Optics, D. B. Ostrovsky, ed., NATO Ser. B41(Plenum, New York, 1979).
[CrossRef]

See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Yeh, P.

See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

Zyss, J.

M. Barzoukas, D. Josse, P. Fremaux, J. Zyss, J. F. Nicoud, and J. O. Morley, “Quadratic nonlinear properties of N-(4-nitro-phenyl)-L-prolinol and of a newly engineered molecular compound N-(4-nitrophenyl)-N-methylaminoacetonitrile: a comparative study,” J. Opt. Soc. Am. B 4, 977–986 (1987); J. Zyss, D. S. Chemla, and J. F. Nicoud, “Demonstration of efficient nonlinear optical crystals with vanishing molecular dipole moment: second-harmonic generation in 3-methyl-4-nitropyridine-1-oxide,” J. Chem. Phys. 74, 4800–4811 (1981).
[CrossRef]

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
[CrossRef]

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- and two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.

Acta Crystallogr. (1)

M. Colapietro, A. Domenicano, C. Marciante, and G. Portalone, “p-nitroaniline revisited,” Acta Crystallogr. A37, C199 (1981).

Acta. Crystallogr. (1)

K. N. Trueblood, E. Goldish, and J. Donohue, “A tridimensional refinement of the crystal structure of 4-nitroaniline,” Acta. Crystallogr. 14, 1009 (1961).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. L. Fork, B. I. Greene, and C. V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking,” Appl. Phys. Lett. 41, 671–672 (1981).
[CrossRef]

W. R. Donaldson and C. L. Tang, “Urea optical parametric oscillator,” Appl. Phys. Lett. 44, 25–27 (1984).
[CrossRef]

Electron. Lett. (3)

P. Vandenbulcke and P. E. Lagasse, “Eigenmode analysis of anisotropic optical fibres or integrated optical waveguides,” Electron. Lett. 12, 120–121 (1976).
[CrossRef]

J. R. Cozens, “Propagation in cylindrical fibres with anisotropic crystal cores,” Electron. Lett. 12, 413–415 (1976).
[CrossRef]

J. L. Stevenson and R. B. Dyott, “Optical-fibre waveguide with a single-crystal core,” Electron. Lett. 10, 449–450 (1974); J. L. Stevenson, “Growth and characterization of single crystal optical fibre waveguides-meta-nitroaniline,” J. Cryst. Growth 37, 116–128 (1977).
[CrossRef]

J. Appl. Phys. (1)

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58, R57–R78 (1985); H. P. Nolting and R. Ulrich, eds., Integrated Optics, Vol. 48 of Springer Series in Optical Sciences (Springer, New York, 1985); Special issue on integrated optics, IEEE J. Quantum Electron. QE-22(1986); S. Sriram, ed., Integrated Optical Circuit Engineering II, Proc. Soc. Photo-Opt. Instrum. Eng. 578(1985).
[CrossRef]

J. Chem. Phys. (2)

J. Zyss, J. F. Nicoud, and M. Coquillay, “Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP),” J. Chem. Phys. 81, 4160–4167 (1984).
[CrossRef]

G. E. Limpscomb, A. F. Garito, and R. S. Narang, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75, 1509–1516 (1981).
[CrossRef]

J. Cryst. Growth (1)

D. W. G. Balletyne and S. M. Al-Shukry, “The growth of single crystals of electro-optic organic compounds in monomode optical fibres,” J. Cryst. Growth 68, 651–655 (1984).
[CrossRef]

J. Math. Sci. (1)

F. H. Babai, R. B. Dyott, and E. A. D. White, “Crystal growth of organic materials in glass capillaries,” J. Math. Sci. 12, 869–872 (1977); F. H. Babai and E. A. D. White, “The growth of void-free crystal cored fibres of organic materials,” J. Cryst. Growth 49, 245–252 (1980).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

S. Tomaru, M. Kawachi, and M. Kobayashi, “Organic crystal growth for optical channel waveguides,” Opt. Commun. 50, 154–156 (1984).
[CrossRef]

G. H. Hewig and K. Jain, “Frequency doubling in an organic waveguide,” Opt. Commun. 47, 347–350 (1983).
[CrossRef]

Opt. Eng. (1)

I. Ledoux, D. Josse, P. Vidakovic, and J. Zyss, “Highly efficient single-crystalline organic thin films for quadratic nonlinear optics,” Opt. Eng. 25, 202–210 (1986).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. Zyss and J. L. Oudar, “Relations between microscopic and macroscopic lowest-order optical nonlinearities of molecular crystals with one- and two-dimensional units,” Phys. Rev. A 26, 2028–2048 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

F. Salin, P. Grangier, G. Roger, and A. Brun, “Observation of high-order solitons directly produced by a femtosecond ring laser,” Phys. Rev. Lett. 56, 1132–1135 (1986).
[CrossRef] [PubMed]

Proceedings of E-MRS XIII (1)

P. V. Vidakovic, “Growth of nonlinear organic waveguides,” in Proceedings of E-MRS XIII[J. Phys. (Paris) (June1986)], pp. 387–400.

Other (15)

B. K. Nayar, R. Kashyap, and K. I. White, “Design of efficient organic crystal cored fibres for parametric interactions: phase matching requirements,” in Integrated Optical Circuit Engineering III, R. Th. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.651(1986).
[CrossRef]

P. V. Vidakovic, J. Badan, R. Hierle, and J. Zyss, “Highly efficient organic structures for wave-guided nonlinear optics,” in Digest of the International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper PD-C5-1.

J. Badan, R. Hierle, A. Perigaud, and P. Vidakovic, “Growth and characterization of molecular crystals,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986), Chap. III.4.

B. K. Nayar, “Optical second harmonic generation in crystal cored fibers,” in Digest of the Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1982), paper ThA2; B. K. Nayar, “Nonlinear optical interactions in organic crystal cored fibers,” in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983), pp. 153–156.
[CrossRef]

S. Umegaki, Y. Takahashi, A. Manabe, and S. Tanaka, in Proceedings of the Symposium on Nonlinear Optical Materials (Materials Research Society, Boston, 1985), p. 97.

See, for example, A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).

D. Marcuse, Theory of Dielectric Waveguides (Academic, New York, 1974).

N. S. Kapany and J. J. Burke, Optical Waveguides (Academic, New York, 1972).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

D. J. Williams, ed., Nonlinear Optical Properties of Organic and Polymeric Materials, ACS Symp. Ser. 233 (American Chemical Society, Washington, D.C., 1983).
[CrossRef]

D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1986), Vols. 1 and 2.

A. Yariv, “The coupled-mode formalism in guided-wave optics,” in Fiber and Integrated Optics, D. B. Ostrovsky, ed., NATO Ser. B41(Plenum, New York, 1979).
[CrossRef]

J. F. Nicoud and R. J. Twieg, “Design and synthesis of organic molecular compounds for efficient second harmonic generation,” in Nonlinear Optical Properties of Organic Molecules and Crystals, D. S. Chemla and J. Zyss, eds. (Academic, New York, 1986).

B. A. Frentz, Structure Determination Package (Frentz, College Station, Tex.; Enraf-Nonius, Delft, The Netherlands, 1982).

P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Wolfson, multan 11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data (U. York Press, York, UK; U. Louvain Press, Louvain, Belgium, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of a NL fiber.

Fig. 2
Fig. 2

SHG process HE 11 y ( ω ) + HE 11 y ( ω ) HE 11 x ( 2 ω ) in a weakly guiding biaxial crystal-cored fiber. Phase-matching conditions are ensured because of core birefringence.

Fig. 3
Fig. 3

Orientation of the molecular-axes frame within the crystal-axes frame for a hypothetical planar paranitroanilinelike molecule.

Fig. 4
Fig. 4

Crystal-growth methods: (a) classical BS, (b) IBS, and (c) ZM methods.

Fig. 5
Fig. 5

Profile drawing (ortep ii) of a NPAN molecule showing the nitrile group out of the mean plane of the molecule.

Fig. 6
Fig. 6

A good-quality 2-μm-i.d. NPAN–silica fiber between crossed polarizers. Homogeneous extinction (top) and lightening (bottom) over the entire length of the fiber (~5 cm) shows that there are no defects present and the single-crystal orientation is maintained.

Fig. 7
Fig. 7

(a) Bond lengths (in angstroms) and (b) angles (in degrees) with estimated standard deviations in parentheses. Hydrogen atoms are omitted.

Fig. 8
Fig. 8

Molecular configuration of NPAN (ortep ii stereo drawing). The thermal ellipsoids are drawn at a 50% probability level (except for hydrogen atoms).

Fig. 9
Fig. 9

Profile drawing (ortep ii) of a NPAN molecule showing the nitrile group out of the mean plane of the molecule.

Fig. 10
Fig. 10

Stereodrawing of NPAN molecular packing in the crystal unitcell (ortep ii).

Fig. 11
Fig. 11

Orientation of the mean molecular plane of NPAN in (a) the crystal-axes frame and (b) in the fiber.

Fig. 12
Fig. 12

The same as in Fig. 11 but for an NPP fiber.

Fig. 13
Fig. 13

Some defects appearing during the growth of NPAN in the capillaries (voids, bubbles, broken core, change in single-crystal orientation, etc.) observed between crossed polarizers.

Fig. 14
Fig. 14

Transmission of a He–Ne laser beam through a 139-μm-i.d. NPAN fiber.

Fig. 15
Fig. 15

Interferometric setup used to measure the effective refractive index and wavelength dispersion of a 139-μm-i.d. NPAN–silica fiber.

Fig. 16
Fig. 16

Dispersion of the effective index of a 139-μm-i.d. NPAN–silica fiber.

Fig. 17
Fig. 17

NPAN bulk single crystal (the height of this conical sample is ~8 mm).

Tables (5)

Tables Icon

Table 1 Relevant Nonlinear Coefficients for Second-Harmonic Generation in a Weakly Guiding Crystal Fiber Shown for All Acentric Crystal Groupsa

Tables Icon

Table 2 Maximum Values of Relevant Nonlinear Coefficients for Optimized Molecular Orientations in the Crystal Unit Cell for Both 1-D and 2-D Molecules

Tables Icon

Table 3 Linear and Nonlinear Properties of Inorganic and Organic Materials Relevant for Their Use in Device Applications

Tables Icon

Table 4 Various Nonlinear Organic Waveguides Grown by Different Methods

Tables Icon

Table 5 Positional Parameters and Their Estimated Standard Deviations for the NPAN Molecule

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P = χ ( 1 ) · E + χ ( 2 ) : EE + ,
curl ( curl E ) + 2 ( E ) / t 2 = - μ 0 2 P NL / t 2 ,
E x = A x E x ( x , y ) exp [ j ( ω t - β x z ) ] , E y E z 0 ;
E y = A y E y ( x , y ) exp [ j ( ω t - β y z ) ] , E x E z 0.
2 E t - μ 0 2 E t / t 2 = μ 0 2 P NL / t 2 ,
E t = ( 1 / 2 ) m E t ( m ) ( x , y ) A ( m ) ( z ) exp [ j ( ω t - β t ( m ) z ) ] .
d A ( z ) ( m ) d z = j ω 0 2 - + - + χ i j k E i * ( m , 2 ω ) ( x , y ) E j ( n , ω ) ( x , y ) × E k ( n , ω ) ( x , y ) ( A ( n , ω ) ) 2 exp ( - j Δ β z ) d x d y .
Δ β = β t ( m , 2 ω ) - 2 β t ( n , ω )
P ( 2 ω , L ) = A ( m , 2 ω ) 2 ~ L 2 P 2 ( ω , 0 ) I R 2 f ( Δ β L ) ,
I R = ( c 0 / 2 ) - + - + χ i j k E i * ( m , 2 ω ) ( x , y ) E j ( n , ω ) ( x , y ) × E k ( n , ω ) ( x , y ) d x d y .
d I J K ( - 2 ω ; ω , ω ) = N f I 2 ω f J ω f K ω b I J K ( - 2 ω ; ω , ω ) ,
b I J K = [ 1 / n ( g ) ] s = 1 i , j , k n ( g ) cos [ I , i ( s ) ] cos [ J , j ( s ) ] cos [ K , k ( s ) ] β i j k ( s ) .
n eff = 1 + 2 ( x 1 - x 2 ) / L ,
d 32 = N ( f ω ) 2 ( f 2 ω ) cos 2 ϕ sin 2 θ cos θ β y y y ,             θ = α .

Metrics