Abstract

Ponderomotive scattering strongly affects photoelectron spectra in above-threshold ionization. We review experimental studies of intensity-dependent angular distributions and inelastic electron scattering that demonstrate how electrons may be scattered, accelerated, or decelerated by the laser beam after photoionization.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
    [CrossRef]
  2. T. B. Kibble, Phys. Rev. 150, 7060 (1966).
    [CrossRef]
  3. H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
    [CrossRef]
  4. L. Pan, L. Armstrong, J. H. Eberly, J. Opt. Soc. Am. B 3, 1319 (1986).
    [CrossRef]
  5. P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985).
    [CrossRef] [PubMed]
  6. P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
    [CrossRef] [PubMed]

1987 (1)

P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
[CrossRef] [PubMed]

1986 (2)

L. Pan, L. Armstrong, J. H. Eberly, J. Opt. Soc. Am. B 3, 1319 (1986).
[CrossRef]

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

1985 (1)

P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985).
[CrossRef] [PubMed]

1983 (1)

H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
[CrossRef]

1966 (1)

T. B. Kibble, Phys. Rev. 150, 7060 (1966).
[CrossRef]

Armstrong, L.

Bashkansky, M.

P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
[CrossRef] [PubMed]

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

Bucksbaum, P. H.

P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
[CrossRef] [PubMed]

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

Eberly, J. H.

Freeman, R. R.

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

Kibble, T. B.

T. B. Kibble, Phys. Rev. 150, 7060 (1966).
[CrossRef]

Lambropoulos, P.

P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985).
[CrossRef] [PubMed]

McIlrath, T. J.

P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
[CrossRef] [PubMed]

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

Muller, H. G.

H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
[CrossRef]

Pan, L.

Tip, A.

H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
[CrossRef]

van der Wiel, M. J.

H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

H. G. Muller, A. Tip, M. J. van der Wiel, J. Phys. B 16, L679 (1983); M. H. Mittleman, Phys. Rev. A 29, 2245 (1984); A. Szöke, J. Phys. B 18, L427 (1985).
[CrossRef]

Phys. Rev. (1)

T. B. Kibble, Phys. Rev. 150, 7060 (1966).
[CrossRef]

Phys. Rev. Lett. (2)

P. Lambropoulos, Phys. Rev. Lett. 55, 2141 (1985).
[CrossRef] [PubMed]

P. H. Bucksbaum, M. Bashkansky, T. J. McIlrath, Phys. Rev. Lett. 58, 349 (1987).
[CrossRef] [PubMed]

PRL (1)

R. R. Freeman, T. J. McIlrath, P. H. Bucksbaum, M. Bashkansky, PRL 57, 3156 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The ATI spectrum of xenon is shown aligned with a xenon energy-level diagram to show the number of photons absorbed for each peak.

Fig. 2
Fig. 2

Schematic illustration of the ponderomotive shift (ac Stark shift) of the atomic ionization potential.

Fig. 3
Fig. 3

Perspective drawing of the ponderomotive potential as a function of position in the focal plane perpendicular to k.

Fig. 4
Fig. 4

Angular distributions as a function of laser intensity for three ATI peaks, S1, S2, and S3 in xenon, corresponding to absorption of 12, 13, and 14 photons, respectively, with a P(3/2) final state of Xe+. The solid lines show the results of trajectory simulations, using the ponderomotive force shown in Fig. 3 and described in the text.

Fig. 5
Fig. 5

Demonstration of the relation between residual anisotropy in the electron angular distributions for large ponderomotive forces and the initial velocity of the electrons.

Fig. 6
Fig. 6

Angular distribution created by an elliptical focus with the laser polarization along the major axis of the ellipse. This diverts electrons away from the polarization direction toward the steepest negative gradients.

Fig. 7
Fig. 7

Xenon and krypton spectra as a function of peak laser intensity. The peak widths increase, as shown in Table 1.

Fig. 8
Fig. 8

Illustration of a classical electron surfing on a laser pulse. The four drawings depict the region near the laser focus at four different times. In the first drawing on the left, an electron is at rest in the laser focus but the laser pulse has not yet arrived. Both the ponderomotive potential and the electron kinetic energy are zero. In the second picture, the leading edge of the laser pulse is in the focus and the electron has ponderomotive potential energy. In the third drawing, the electron accelerates out of the laser focus in the direction of the negative gradient of UP, thus converting its ponderomotive potential energy to translational kinetic energy. In the final drawing the laser pulse has passed. The electron has gained energy during its encounter with the laser beam by surfing on the ponderomotive potential.

Fig. 9
Fig. 9

Electron surfing experiment. Electrons produced at the 532-nm focus were scattered and accelerated by the ponderomotive potential of a 1064-nm laser pulse placed close by.

Fig. 10
Fig. 10

Data from the electron surfing experiment shown in Fig. 9.

Fig. 11
Fig. 11

Trajectory simulation of the data shown in Fig. 10, employing a time-varying ponderomotive scattering potential.

Tables (1)

Tables Icon

Table 1 FWHM (in eV) for Photoelectron Spectral Peaksa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U = ½ m e r ˙ 2 = e 2 E 0 2 4 m e ω 2 ,
U = 2 π e 2 I m e c ω 2 .
H = [ p - ( e / c ) A ] 2 2 m e = p 2 2 m e - e 2 m e c ( p · A + A · p ) + e 2 A 2 2 m e c 2 .
I ( r , z , t ) = P 0 r ( z ) 2 exp { - [ r / r ( z ) ] 2 } exp { - [ ( t - z ) / c ) / τ ] 2 } ,
δ E = H ( p , r , t ) t δ t = 2 π e 2 I ( r , t ) m e c ω 2 t δ t ,

Metrics