Abstract

Short-pulse generation by an ultraviolet fiber Raman laser has been studied both experimentally and by computer analysis. A XeCl excimer laser generating 3-nsec pulses pumped a multimode silica fiber. The fiber produced five orders of Stokes pulses in the range 312–331 nm at 2-GW/cm2 input. The duration of these Stokes pulses was controlled by input intensity. The shortest pulse durations were between 1.4 and 1.7 nsec. The pulse waveforms were analyzed by solving coupled differential equations. The calculated results are in agreement with the experimental ones. The effects of modal and wavelength dispersion, four-photon mixing, and two-photon absorption are discussed.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216 (1976).
    [CrossRef]
  2. C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
    [CrossRef]
  3. C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
    [CrossRef]
  4. F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers,” Appl. Opt. 22, 3859 (1983).
    [CrossRef] [PubMed]
  5. C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428 (1976).
    [CrossRef]
  6. Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
    [CrossRef]
  7. A. R. Chraplyvy, J. Stone, C. A. Burrus, “Optical gain exceeding 35 dB at 1.56 μ m due to stimulated Raman scattering by molecular D2in a solid silica optical fiber,” Opt. Lett. 8, 415 (1983).
    [CrossRef] [PubMed]
  8. M. Nakazawa, M. Tokuda, Y. Negishi, N. Uchida, “Active transmission line: light amplification by backward-stimulated Raman scattering in polarization-maintaining optical fiber,” J. Opt. Soc. Am. B 1, 80 (1984).
    [CrossRef]
  9. R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
    [CrossRef]
  10. M. Rothschild, H. Abad, “Stimulated Raman scattering in fibers in the ultraviolet,” Opt. Lett. 8, 653 (1983).
    [CrossRef] [PubMed]
  11. T. Mizunami, K. Takagi, “Multiple-order Stokes pulse generation by nitrogen-laser-pumped fiber Raman laser,” IEEE J. Quantum Electron. QE-22, 227 (1986).
    [CrossRef]
  12. R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
    [CrossRef]
  13. R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
    [CrossRef]
  14. R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, C. Lin, “High conversion efficiency ultraviolet fiber Raman oscillator–amplifier system,” Appl. Opt. 25, 1048 (1986).
    [CrossRef]
  15. R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
    [CrossRef]
  16. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
    [CrossRef]
  17. M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
    [CrossRef]
  18. A. Takahashi, M. Maeda, Y. Noda, “Short pulse generation and compression in XeCl lasers,” IEEE J. Quantum Electron. QE-20, 1196 (1984).
    [CrossRef]
  19. O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
    [CrossRef]
  20. T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
    [CrossRef]
  21. J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
    [CrossRef]
  22. V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
    [CrossRef]
  23. R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652 (1984).
    [CrossRef]
  24. I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426 (1983).
    [CrossRef]
  25. P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
    [CrossRef]
  26. P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015 (1979).
    [CrossRef] [PubMed]
  27. This value was reported at first in Ref. 25 to be 4.5 × 10−5 cm/MW but was corrected as in the text.
  28. Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
    [CrossRef]

1986 (2)

T. Mizunami, K. Takagi, “Multiple-order Stokes pulse generation by nitrogen-laser-pumped fiber Raman laser,” IEEE J. Quantum Electron. QE-22, 227 (1986).
[CrossRef]

R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, C. Lin, “High conversion efficiency ultraviolet fiber Raman oscillator–amplifier system,” Appl. Opt. 25, 1048 (1986).
[CrossRef]

1984 (3)

1983 (9)

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426 (1983).
[CrossRef]

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

M. Rothschild, H. Abad, “Stimulated Raman scattering in fibers in the ultraviolet,” Opt. Lett. 8, 653 (1983).
[CrossRef] [PubMed]

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

A. R. Chraplyvy, J. Stone, C. A. Burrus, “Optical gain exceeding 35 dB at 1.56 μ m due to stimulated Raman scattering by molecular D2in a solid silica optical fiber,” Opt. Lett. 8, 415 (1983).
[CrossRef] [PubMed]

F. R. Barbosa, “Quasi-stationary multiple stimulated Raman generation in the visible using optical fibers,” Appl. Opt. 22, 3859 (1983).
[CrossRef] [PubMed]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

1981 (1)

T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
[CrossRef]

1979 (4)

V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
[CrossRef]

P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015 (1979).
[CrossRef] [PubMed]

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

1978 (2)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

1977 (1)

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

1976 (3)

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428 (1976).
[CrossRef]

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

1969 (1)

M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
[CrossRef]

1967 (1)

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
[CrossRef]

Abad, H.

Adhav, R. S.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Aoki, Y.

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

Barbosa, F. R.

Bechtel, J. H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Bigio, I. J.

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426 (1983).
[CrossRef]

Bloembergen, N.

P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Burrus, C. A.

Butylkin, V. S.

V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
[CrossRef]

Chraplyvy, A. R.

Cohen, L. G.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

Eimerl, D.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

French, W. G.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

Fujioka, T.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
[CrossRef]

Goldhar, J.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Grigoryants, V. V.

V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
[CrossRef]

Hagenlocker, E. E.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
[CrossRef]

Haider, A. F. M. Y.

Hays, A. K.

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

Hoffman, J. M.

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

Honmou, H.

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

Itoh, Y.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Jain, R. K.

Kaiser, W. K.

M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
[CrossRef]

Kishida, S.

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

Kunitomo, K.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Lee, C.

Lin, C.

R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, C. Lin, “High conversion efficiency ultraviolet fiber Raman oscillator–amplifier system,” Appl. Opt. 25, 1048 (1986).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428 (1976).
[CrossRef]

Liu, P.

P. Liu, R. Yen, N. Bloembergen, “Two-photon absorption coefficients in UV window and coating materials,” Appl. Opt. 18, 1015 (1979).
[CrossRef] [PubMed]

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Lotem, H.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Maeda, M.

A. Takahashi, M. Maeda, Y. Noda, “Short pulse generation and compression in XeCl lasers,” IEEE J. Quantum Electron. QE-20, 1196 (1984).
[CrossRef]

T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
[CrossRef]

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

Maier, M.

M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
[CrossRef]

Matera, M.

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Mazzoni, M.

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

Minck, R. W.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
[CrossRef]

Miyazoe, Y.

T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
[CrossRef]

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

Mizunami, T.

T. Mizunami, K. Takagi, “Multiple-order Stokes pulse generation by nitrogen-laser-pumped fiber Raman laser,” IEEE J. Quantum Electron. QE-22, 227 (1986).
[CrossRef]

T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
[CrossRef]

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

Murray, J. R.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Nakazawa, M.

Negishi, Y.

Nguyen, V. T.

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

Noda, Y.

A. Takahashi, M. Maeda, Y. Noda, “Short pulse generation and compression in XeCl lasers,” IEEE J. Quantum Electron. QE-20, 1196 (1984).
[CrossRef]

Obara, M.

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

Pini, R.

R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, C. Lin, “High conversion efficiency ultraviolet fiber Raman oscillator–amplifier system,” Appl. Opt. 25, 1048 (1986).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

Rado, W. G.

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
[CrossRef]

Rothschild, M.

Salimbeni, R.

R. Pini, R. Salimbeni, M. Vannini, A. F. M. Y. Haider, C. Lin, “High conversion efficiency ultraviolet fiber Raman oscillator–amplifier system,” Appl. Opt. 25, 1048 (1986).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

Slatkine, M.

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426 (1983).
[CrossRef]

Smirnov, V. I.

V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
[CrossRef]

Smith, W. L.

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Stolen, R. H.

R. H. Stolen, C. Lee, R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652 (1984).
[CrossRef]

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428 (1976).
[CrossRef]

Stone, J.

Sugimoto, M.

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

Szoeke, A.

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

Takagi, K.

T. Mizunami, K. Takagi, “Multiple-order Stokes pulse generation by nitrogen-laser-pumped fiber Raman laser,” IEEE J. Quantum Electron. QE-22, 227 (1986).
[CrossRef]

Takahashi, A.

A. Takahashi, M. Maeda, Y. Noda, “Short pulse generation and compression in XeCl lasers,” IEEE J. Quantum Electron. QE-20, 1196 (1984).
[CrossRef]

Tasker, G. W.

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

Tellinghuisen, J.

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

Tisone, G. C.

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

Tokuda, M.

Uchida, N.

Uchino, O.

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

Vannini, M.

Washio, K.

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

Yen, R.

Appl. Opt. (3)

Appl. Phys. (1)

O. Uchino, T. Mizunami, M. Maeda, Y. Miyazoe, “Efficient dye lasers pumped by a XeCl excimer laser,” Appl. Phys. 19, 35 (1979).
[CrossRef]

Appl. Phys. Lett. (4)

R. Pini, M. Mazzoni, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet stimulated Raman scattering in multimode silica fibers pumped with excimer lasers,” Appl. Phys. Lett. 43, 6 (1983).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Wideband frequency conversion in the UV by nine orders of stimulated Raman scattering in a XeCl laser pumped multimode silica fiber,” Appl. Phys. Lett. 43, 517 (1983).
[CrossRef]

C. Lin, R. H. Stolen, “Backward Raman amplification and pulse steepening in silica fibers,” Appl. Phys. Lett. 29, 428 (1976).
[CrossRef]

C. Lin, R. H. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216 (1976).
[CrossRef]

Electron. Lett. (2)

C. Lin, V. T. Nguyen, W. G. French, “Wideband near-IR continuum (0.7–2.1μm) generation in low-loss optical fibres,” Electron. Lett. 14, 822 (1978).
[CrossRef]

Y. Aoki, S. Kishida, H. Honmou, K. Washio, M. Sugimoto, “Efficient backward and forward pumping cw Raman amplification for InGaAsP laser light in silica fibers,” Electron. Lett. 19, 620 (1983).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. R. Murray, J. Goldhar, D. Eimerl, A. Szoeke, “Raman pulse compression of excimer lasers for application to laser fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979).
[CrossRef]

T. Mizunami, K. Takagi, “Multiple-order Stokes pulse generation by nitrogen-laser-pumped fiber Raman laser,” IEEE J. Quantum Electron. QE-22, 227 (1986).
[CrossRef]

A. Takahashi, M. Maeda, Y. Noda, “Short pulse generation and compression in XeCl lasers,” IEEE J. Quantum Electron. QE-20, 1196 (1984).
[CrossRef]

I. J. Bigio, M. Slatkine, “Injection-locking unstable resonator excimer lasers,” IEEE J. Quantum Electron. QE-19, 1426 (1983).
[CrossRef]

J. Appl. Phys. (2)

Y. Itoh, K. Kunitomo, M. Obara, T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956 (1983).
[CrossRef]

R. W. Minck, E. E. Hagenlocker, W. G. Rado, “Simultaneous occurrence of and competition between stimulated optical-scattering processes in gases,” J. Appl. Phys. 38, 2254 (1967).
[CrossRef]

J. Chem. Phys. (1)

J. Tellinghuisen, J. M. Hoffman, G. C. Tisone, A. K. Hays, “Spectroscopic studies of diatomic noble gas halides: analysis of spontaneous and stimulated emission from XeCl,” J. Chem. Phys. 64, 2484 (1976).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

T. Mizunami, M. Maeda, Y. Miyazoe, “Use of argon diluent gas in a self-sustained discharge excimer laser,” Jpn. J. Appl. Phys. 20, 1763 (1981).
[CrossRef]

Opt. Commun. (2)

C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, W. G. French, “Near-infrared sources in the 1–1.3μm region by efficient stimulated Raman emission in glass fibers,” Opt. Commun. 20, 426 (1977).
[CrossRef]

R. Pini, R. Salimbeni, M. Matera, C. Lin, “Ultraviolet four-photon mixing in a multimode silica fiber Raman amplifier,” Opt. Commun. 47, 226 (1983).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

V. S. Butylkin, V. V. Grigoryants, V. I. Smirnov, “On the role of SRS in the transmission of intense laser light through silica-fiber light-guides,” Opt. Quantum Electron. 11, 141 (1979).
[CrossRef]

Phys. Rev. (1)

M. Maier, W. K. Kaiser, J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev. 177, 580 (1969).
[CrossRef]

Phys. Rev. B (1)

P. Liu, W. L. Smith, H. Lotem, J. H. Bechtel, N. Bloembergen, R. S. Adhav, “Absolute two-photon absorption coefficients at 355 and 266 nm,” Phys. Rev. B 17, 4620 (1978).
[CrossRef]

Other (1)

This value was reported at first in Ref. 25 to be 4.5 × 10−5 cm/MW but was corrected as in the text.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup of the XeCl-laser-pumped fiber Raman laser.

Fig. 2
Fig. 2

Fiber output spectrum. The input intensity is 2 GW/cm2.

Fig. 3
Fig. 3

Dependence of Stokes outputs on input intensity.

Fig. 4
Fig. 4

Stokes pulse waveforms for 1.6-GW/cm2 input.

Fig. 5
Fig. 5

Waveforms of Stokes pulses under short-pulse-generating conditions.

Fig. 6
Fig. 6

Output waveforms of a 20-m-long fiber. The input intensity is 0.66 GW/cm2.

Fig. 7
Fig. 7

Calculated waveforms for 1.6-GW/cm2 input from a 100-m-long fiber.

Fig. 8
Fig. 8

Calculated waveforms for the same inputs as in Fig. 5. Fiber length is 100 m.

Fig. 9
Fig. 9

Stokes energy density versus input intensity (calculated). Fiber length is 100 m.

Fig. 10
Fig. 10

(a) Peak intensities and (b) pulse durations of pump and Stokes pulses versus input intensity (calculated). The dashed lines in (b) indicate that the pulses have two peaks. Fiber length is 100 m.

Fig. 11
Fig. 11

Peak intensities (dashed–dotted lines) and pulse durations (solid lines and dashed lines) for a 20-m-long fiber (calculated). The dashed lines indicate that the pulses have two peaks.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 0 x 0 = - a 0 I 0 - λ 1 λ 0 g 1 I 1 I 0 ,
I i x = g i ( I i I i - 1 - I i + 1 I i ) - a i I i + B λ i 4 I i - 1 Δ ν i ,
I n x = g n I n I n - 1 - a n I n + B λ n 4 I n - 1 Δ ν n ,
B = K f π ( N . A . ) 2 ,

Metrics