Abstract

Resonantly enhanced surface second-harmonic generation and sum-frequency generation have been demonstrated on Rhodamine 6G-coated glass substrates using a noncollinear excitation geometry. This geometry yields an output beam that is spatially separated from the input beams. The relative efficiency of nonlinear generation as a function of the angular dependence and spatial overlap of the input beams is calculated and compared with experiment.

© 1987 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, J. Vac. Sci. Technol. B 3, 1464 (1985).
    [CrossRef]
  2. T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
    [CrossRef]
  3. H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
    [CrossRef]
  4. G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
    [CrossRef]
  5. H. W. K. Tom, Lawrence Berkeley Laboratory Rep. No. LBL-17820 (Lawrence Berkeley Laboratory, Upton, N.Y., 1984).
  6. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  7. A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
    [CrossRef]
  8. N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
    [CrossRef]
  9. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
    [CrossRef]
  10. B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
    [CrossRef]
  11. D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
    [CrossRef]

1986 (1)

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

1985 (4)

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

Y. R. Shen, J. Vac. Sci. Technol. B 3, 1464 (1985).
[CrossRef]

G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
[CrossRef]

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

1983 (1)

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
[CrossRef]

1982 (1)

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

1962 (1)

N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
[CrossRef]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
[CrossRef]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

Chen, C. K.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

Dick, B.

G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
[CrossRef]

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

Gierulski, A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
[CrossRef]

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Heinz, T. F.

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
[CrossRef]

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

Keller, R. A.

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

Marowsky, G.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
[CrossRef]

Muenchausen, R. E.

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

Nguyen, D. C.

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

Nikolaus, B.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Nogar, N. S.

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

Pershan, P. S.

N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
[CrossRef]

Reider, G. A.

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

Ricard, D.

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

Shen, Y. R.

Y. R. Shen, J. Vac. Sci. Technol. B 3, 1464 (1985).
[CrossRef]

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
[CrossRef]

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Tom, H. W. K.

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
[CrossRef]

H. W. K. Tom, Lawrence Berkeley Laboratory Rep. No. LBL-17820 (Lawrence Berkeley Laboratory, Upton, N.Y., 1984).

Vorob’ev, N.

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

Appl. Phys. B (2)

A. Gierulski, G. Marowsky, B. Nikolaus, and N. Vorob’ev, Appl. Phys. B 36, 133 (1985).
[CrossRef]

B. Dick, A. Gierulski, G. Marowsky, and G. A. Reider, Appl. Phys. B 38, 107 (1985).
[CrossRef]

J. Vac. Sci. Technol. B (1)

Y. R. Shen, J. Vac. Sci. Technol. B 3, 1464 (1985).
[CrossRef]

Laser Chem. (1)

H. W. K. Tom, T. F. Heinz, and Y. R. Shen, Laser Chem. 3, 279 (1983).
[CrossRef]

Opt. Commun. (2)

G. Marowsky, A. Gierulski, and B. Dick, Opt. Commun. 52, 339 (1985).
[CrossRef]

D. C. Nguyen, R. E. Muenchausen, R. A. Keller, and N. S. Nogar, Opt. Commun. 60, 111 (1986).
[CrossRef]

Phys. Rev. (2)

N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).
[CrossRef]

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).
[CrossRef]

Phys. Rev. Lett. (1)

T. F. Heinz, C. K. Chen, D. Ricard, and Y. R. Shen, Phys. Rev. Lett. 48, 478 (1982).
[CrossRef]

Other (2)

H. W. K. Tom, Lawrence Berkeley Laboratory Rep. No. LBL-17820 (Lawrence Berkeley Laboratory, Upton, N.Y., 1984).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simplified coordinate system that defines the noncollinear excitation geometry. The projection angle ϕ is the angle between the input beams in the xy plane. The reflected nonlinear output lies in the xz plane. The transmitted beams have been omitted for clarity.

Fig. 2
Fig. 2

Calculation of p-polarized intensity of reflected SHG, Ippp. For 0 ≤ ϕ ≤ 15° the calculated intensity decreases by ~10%.

Fig. 3
Fig. 3

Schematic of SHG and SFG optical components for noncollinear excitation geometry. M1–M6, mirrors; F, color filter; L1, 18-cm focal-length lens; L2,15-cm focal-length lens; L3, 7.5-cm focal-length lens; S, scannable slit.

Fig. 4
Fig. 4

a, Spatial scan of the reflected 695-nm pump beams for noncollinear SHG excitation. b, Spatial scan of SHG with no pump beam overlap. c, Same as b except for overlapped pump beams. Monochromator set at 347 nm.

Fig. 5
Fig. 5

a, Spectral scan of SHG and two-photon, broadband fluorescence of Rhodamine 6G excited at 695 nm with the 5-56 color filter inserted. b, Same as a except for spatial rejection of the collinear SHG and reflected pump beams. The color filter has been removed.

Fig. 6
Fig. 6

a, Spatial scan of IR (left) and 525-nm reflected light (right) for noncollinear SFG with no input-beam overlap. b, Spatial scan of noncollinear SFG with input beams overlapped and the color filter inserted. Monochromator set at 351 nm.

Tables (1)

Tables Icon

Table 1 Typical Experimental Conditions for Noncollinear Excitation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

| k 1 y | = | k 2 y | ,
k 1 y = k 1 sin θ 1 sin δ 1 ,
k 2 y = k 2 sin θ 2 sin δ 2 .
tan δ 1 = k 2 sin θ 2 sin ϕ k 1 sin θ 1 + k 2 sin θ 2 cos ϕ .
tan δ 1 = k 2 sin ϕ k 1 + k 2 cos ϕ ,
S ( f , ω 1 , ω 2 ) = | χ ( 2 ) ( ω s , ω 1 , ω 2 ) | 2 T I 1 ( ω 1 ) I 2 ( ω 2 ) f A 1 + | χ ( 2 ) ( 2 ω 1 , ω 1 ) | 2 T I 1 2 ( ω 1 ) A 1 + | χ ( 2 ) ( 2 ω 2 , ω 2 ) | 2 T I 2 2 ( ω 2 ) A 2 ,
S ( f , ω ) = | χ ( 2 ) ( 2 ω , ω ) | 2 T [ 2 I 1 ( ω 1 ) I 2 ( ω 2 ) f A 1 + I 1 2 ( ω 1 ) A 1 + I 2 2 ( ω 2 ) A 2 ] .
S ( f , ω ) = 2 ( f + 1 ) S 1 ( ω ) ,
S ( f , ω 1 , ω 2 ) = f S ( ω 1 , ω 2 ) ,
n s 2 ω s 2 sin 2 θ s = n i 1 2 ω 1 2 sin 2 θ 1 + n i 2 2 ω 2 2 sin 2 θ 2 + 2 n i 1 n i 2 ω 1 ω 2 sin θ 1 sin θ 2 cos ϕ .

Metrics