H. M. Lai, P. T. Leung, and K. Young, “Thermal spectrum in leaky cavities: a
string model,” Phys. Lett. A119, 337–339 (1987).

S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical
cavities: thermal spectrum and density of states,” J. Opt. Soc. Am B 4, 1995–2003 (1987).

[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from
individual water and ethanol droplets at morphology-dependent
resonances,” Opt. Lett. 10, 37–39 (1985); S.-X. Qian, J. B. Snow, and R. K. Chang, “Coherent Raman mixing and coherent
anti-Stokes Raman scattering from individual micrometer-size
droplets,” Opt. Lett. 10, 499–501 (1985); S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from
micrometer-size droplets,” Phys. Rev.
Lett. 56, 926–929 (1986).

[CrossRef]
[PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an
interface,” Phys. Rev. A 30, 1185–1193 (1984); “Quantum
electrodynamics near an interface, II,” Phys. Rev. A 32, 2030–2043 (1985); A. D. Mclachlan, “Three body dispersion
forces,” Mol. Phys. 6, 423–427 (1963); “Van der Waals
forces between an atom and a surface,” Mol.
Phys. 7, 381–388 (1963); G. S. Agarwal, “Quantum electrodynamics in the presence
of dielectrics and conductors: I. Electromagnetic-field response functions
and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: II. Theory of
dispersion forces,” Phys. Rev. A 11, 243–252 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: III.
Relations among one-photon transition probabilities in stationary and
nonstationary fields, density of states, the field correlation functions and
surface-dependent response functions,” Phys.
Rev. A 11, 253–264 (1975).

[CrossRef]

S. Sachdev, “Atom in a damped
cavity,” Phys. Rev. A 29, 2627–2633 (1984).

[CrossRef]

E. Power and T. Thiunamachandran, “Quantum electrodynamics in a
cavity,” Phys. Rev. A 25, 2473–2484 (1982).

[CrossRef]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

D. Kleppner, “Inhibited spontaneous
emission,” Phys. Rev. Lett. 47, 233–236 (1981); R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a
Rydberg atom,” Phys. Rev. Lett. 55, 2137–2140 (1985).

[CrossRef]
[PubMed]

M. J. Mehl and W. L. Schaich, “The Van der Waals interaction between
an atom and a solid,” Surf. Sci. 99, 553–569 (1980); G. Barton, “Frequency shifts near an interface:
inadequacies of two-level atomic models,” J.
Phys. B 7, 2134–2142 (1974).

[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A
Theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973); J. C. Penaforte and B. Baseia, “Quantum theory of a one-dimensional
laser with output coupling: linear approximation,” Phys. Rev. A 30, 1401–1406 (1984).

[CrossRef]

P. Ullersma, “An exactly solvable model for Brownian
motion I. Derivation of the Langevin equation,” Physica 32, 27–55 (1966); “An exactly
solvable model for Brownian motion II. Derivation of the
Fokker–Planck equation and the master
equation,” Physica 32, 56–73 (1966); “An exactly
solvable model for Brownian motion III. Motion of a heavy mass in a linear
chain,” Physica 32, 74–89 (1966); “An exactly
solvable model for Brownian motion IV. Susceptibility and Nyquist’s
theorem,” Physica 32, 90–96 (1966); R. P. Feynman and F. L. Vernon, “The theory of a general quantum system
interacting with a linear dissipative system,” Ann. Phys. 24, 118–173 (1963); P. S. Riseborough, P. Hanggi, and U. Weiss, “Exact results for a damped
quantum-mechanical harmonic oscillator,” Phys. Rev. A 31, 471–478 (1985); H. Grabert, U. Weiss, and P. Talkner, “Quantum theory of damped harmonic
oscillator,” Z. Phys. B 55, 87–94 (1984); A. O. Caldeira and A. J. Leggett, “Quantum tunnelling in a dissipative
system,” Ann. Phys. (N.Y.) 149, 374–456 (1983).

[CrossRef]
[PubMed]

A. G. Fox and T. Li, “Resonant modes in a maser
interferometer,” Bell Syst. Tech.
J. 40, 453–488 (1961).

[CrossRef]

E. M. Purcell, “Spontaneous emission probabilities at
radio frequencies,” Phys. Rev. 69, 681 (1946).

R. D. Richtmyer, “Dielectric
resonators,” J. Appl. Phys. 10, 391–398 (1939); P. Affolter and B. Eliasson, “Electromagnetic resonances and
Q-factors of lossy dielectric spheres,” IEEE
Trans. Microwave Theory Techn. MTT-21, 573–578 (1973).

[CrossRef]

A. Einstein, “Zur Quantentheorie der
Strahlung,” Phys. Z. 18, 121–128 (1917); R. P. Feynman, R. B. Leighton, and M. Sands, eds., The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1963), Vol. I.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

S. C. Hill and R. E. Benner, “Morphology-dependent resonances
associated with stimulated processes in
microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).

[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from
individual water and ethanol droplets at morphology-dependent
resonances,” Opt. Lett. 10, 37–39 (1985); S.-X. Qian, J. B. Snow, and R. K. Chang, “Coherent Raman mixing and coherent
anti-Stokes Raman scattering from individual micrometer-size
droplets,” Opt. Lett. 10, 499–501 (1985); S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from
micrometer-size droplets,” Phys. Rev.
Lett. 56, 926–929 (1986).

[CrossRef]
[PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical
cavities: thermal spectrum and density of states,” J. Opt. Soc. Am B 4, 1995–2003 (1987).

[CrossRef]

A. Einstein, “Zur Quantentheorie der
Strahlung,” Phys. Z. 18, 121–128 (1917); R. P. Feynman, R. B. Leighton, and M. Sands, eds., The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1963), Vol. I.

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

A. G. Fox and T. Li, “Resonant modes in a maser
interferometer,” Bell Syst. Tech.
J. 40, 453–488 (1961).

[CrossRef]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

D. Kleppner, “Inhibited spontaneous
emission,” Phys. Rev. Lett. 47, 233–236 (1981); R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a
Rydberg atom,” Phys. Rev. Lett. 55, 2137–2140 (1985).

[CrossRef]
[PubMed]

S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical
cavities: thermal spectrum and density of states,” J. Opt. Soc. Am B 4, 1995–2003 (1987).

[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Thermal spectrum in leaky cavities: a
string model,” Phys. Lett. A119, 337–339 (1987).

R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A
Theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973); J. C. Penaforte and B. Baseia, “Quantum theory of a one-dimensional
laser with output coupling: linear approximation,” Phys. Rev. A 30, 1401–1406 (1984).

[CrossRef]

R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A
Theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973); J. C. Penaforte and B. Baseia, “Quantum theory of a one-dimensional
laser with output coupling: linear approximation,” Phys. Rev. A 30, 1401–1406 (1984).

[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Thermal spectrum in leaky cavities: a
string model,” Phys. Lett. A119, 337–339 (1987).

A. G. Fox and T. Li, “Resonant modes in a maser
interferometer,” Bell Syst. Tech.
J. 40, 453–488 (1961).

[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

M. J. Mehl and W. L. Schaich, “The Van der Waals interaction between
an atom and a solid,” Surf. Sci. 99, 553–569 (1980); G. Barton, “Frequency shifts near an interface:
inadequacies of two-level atomic models,” J.
Phys. B 7, 2134–2142 (1974).

[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

E. Power and T. Thiunamachandran, “Quantum electrodynamics in a
cavity,” Phys. Rev. A 25, 2473–2484 (1982).

[CrossRef]

E. M. Purcell, “Spontaneous emission probabilities at
radio frequencies,” Phys. Rev. 69, 681 (1946).

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from
individual water and ethanol droplets at morphology-dependent
resonances,” Opt. Lett. 10, 37–39 (1985); S.-X. Qian, J. B. Snow, and R. K. Chang, “Coherent Raman mixing and coherent
anti-Stokes Raman scattering from individual micrometer-size
droplets,” Opt. Lett. 10, 499–501 (1985); S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from
micrometer-size droplets,” Phys. Rev.
Lett. 56, 926–929 (1986).

[CrossRef]
[PubMed]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

R. D. Richtmyer, “Dielectric
resonators,” J. Appl. Phys. 10, 391–398 (1939); P. Affolter and B. Eliasson, “Electromagnetic resonances and
Q-factors of lossy dielectric spheres,” IEEE
Trans. Microwave Theory Techn. MTT-21, 573–578 (1973).

[CrossRef]

S. Sachdev, “Atom in a damped
cavity,” Phys. Rev. A 29, 2627–2633 (1984).

[CrossRef]

M. J. Mehl and W. L. Schaich, “The Van der Waals interaction between
an atom and a solid,” Surf. Sci. 99, 553–569 (1980); G. Barton, “Frequency shifts near an interface:
inadequacies of two-level atomic models,” J.
Phys. B 7, 2134–2142 (1974).

[CrossRef]

R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A
Theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973); J. C. Penaforte and B. Baseia, “Quantum theory of a one-dimensional
laser with output coupling: linear approximation,” Phys. Rev. A 30, 1401–1406 (1984).

[CrossRef]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an
interface,” Phys. Rev. A 30, 1185–1193 (1984); “Quantum
electrodynamics near an interface, II,” Phys. Rev. A 32, 2030–2043 (1985); A. D. Mclachlan, “Three body dispersion
forces,” Mol. Phys. 6, 423–427 (1963); “Van der Waals
forces between an atom and a surface,” Mol.
Phys. 7, 381–388 (1963); G. S. Agarwal, “Quantum electrodynamics in the presence
of dielectrics and conductors: I. Electromagnetic-field response functions
and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: II. Theory of
dispersion forces,” Phys. Rev. A 11, 243–252 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: III.
Relations among one-photon transition probabilities in stationary and
nonstationary fields, density of states, the field correlation functions and
surface-dependent response functions,” Phys.
Rev. A 11, 253–264 (1975).

[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from
individual water and ethanol droplets at morphology-dependent
resonances,” Opt. Lett. 10, 37–39 (1985); S.-X. Qian, J. B. Snow, and R. K. Chang, “Coherent Raman mixing and coherent
anti-Stokes Raman scattering from individual micrometer-size
droplets,” Opt. Lett. 10, 499–501 (1985); S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from
micrometer-size droplets,” Phys. Rev.
Lett. 56, 926–929 (1986).

[CrossRef]
[PubMed]

E. Power and T. Thiunamachandran, “Quantum electrodynamics in a
cavity,” Phys. Rev. A 25, 2473–2484 (1982).

[CrossRef]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

P. Ullersma, “An exactly solvable model for Brownian
motion I. Derivation of the Langevin equation,” Physica 32, 27–55 (1966); “An exactly
solvable model for Brownian motion II. Derivation of the
Fokker–Planck equation and the master
equation,” Physica 32, 56–73 (1966); “An exactly
solvable model for Brownian motion III. Motion of a heavy mass in a linear
chain,” Physica 32, 74–89 (1966); “An exactly
solvable model for Brownian motion IV. Susceptibility and Nyquist’s
theorem,” Physica 32, 90–96 (1966); R. P. Feynman and F. L. Vernon, “The theory of a general quantum system
interacting with a linear dissipative system,” Ann. Phys. 24, 118–173 (1963); P. S. Riseborough, P. Hanggi, and U. Weiss, “Exact results for a damped
quantum-mechanical harmonic oscillator,” Phys. Rev. A 31, 471–478 (1985); H. Grabert, U. Weiss, and P. Talkner, “Quantum theory of damped harmonic
oscillator,” Z. Phys. B 55, 87–94 (1984); A. O. Caldeira and A. J. Leggett, “Quantum tunnelling in a dissipative
system,” Ann. Phys. (N.Y.) 149, 374–456 (1983).

[CrossRef]
[PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an
interface,” Phys. Rev. A 30, 1185–1193 (1984); “Quantum
electrodynamics near an interface, II,” Phys. Rev. A 32, 2030–2043 (1985); A. D. Mclachlan, “Three body dispersion
forces,” Mol. Phys. 6, 423–427 (1963); “Van der Waals
forces between an atom and a surface,” Mol.
Phys. 7, 381–388 (1963); G. S. Agarwal, “Quantum electrodynamics in the presence
of dielectrics and conductors: I. Electromagnetic-field response functions
and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: II. Theory of
dispersion forces,” Phys. Rev. A 11, 243–252 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: III.
Relations among one-photon transition probabilities in stationary and
nonstationary fields, density of states, the field correlation functions and
surface-dependent response functions,” Phys.
Rev. A 11, 253–264 (1975).

[CrossRef]

See, e.g., A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971).

S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical
cavities: thermal spectrum and density of states,” J. Opt. Soc. Am B 4, 1995–2003 (1987).

[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Thermal spectrum in leaky cavities: a
string model,” Phys. Lett. A119, 337–339 (1987).

A. G. Fox and T. Li, “Resonant modes in a maser
interferometer,” Bell Syst. Tech.
J. 40, 453–488 (1961).

[CrossRef]

R. D. Richtmyer, “Dielectric
resonators,” J. Appl. Phys. 10, 391–398 (1939); P. Affolter and B. Eliasson, “Electromagnetic resonances and
Q-factors of lossy dielectric spheres,” IEEE
Trans. Microwave Theory Techn. MTT-21, 573–578 (1973).

[CrossRef]

S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical
cavities: thermal spectrum and density of states,” J. Opt. Soc. Am B 4, 1995–2003 (1987).

[CrossRef]

J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from
individual water and ethanol droplets at morphology-dependent
resonances,” Opt. Lett. 10, 37–39 (1985); S.-X. Qian, J. B. Snow, and R. K. Chang, “Coherent Raman mixing and coherent
anti-Stokes Raman scattering from individual micrometer-size
droplets,” Opt. Lett. 10, 499–501 (1985); S.-X. Qian and R. K. Chang, “Multiorder Stokes emission from
micrometer-size droplets,” Phys. Rev.
Lett. 56, 926–929 (1986).

[CrossRef]
[PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets
at wavelengths corresponding to morphology-dependent
resonances,” Opt. Lett. 9, 499–501 (1984); S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the
liquid–air interface by laser emission,” Science 231, 486–488 (1986).

[CrossRef]
[PubMed]

S. Haroche, P. Goy, J. M. Raimond, C. Fabre, and M. Gross, “Exploration of radiative properties of
very excited atoms,” Phil. Trans. Roy. Soc.
London Ser. A 307, 659–672 (1982); P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single
atom spontaneous emission,” Phys. Rev.
Lett. 50, 1903–1906 (1983).

[CrossRef]

H. M. Lai, P. T. Leung, and K. Young, “Thermal spectrum in leaky cavities: a
string model,” Phys. Lett. A119, 337–339 (1987).

E. M. Purcell, “Spontaneous emission probabilities at
radio frequencies,” Phys. Rev. 69, 681 (1946).

E. Power and T. Thiunamachandran, “Quantum electrodynamics in a
cavity,” Phys. Rev. A 25, 2473–2484 (1982).

[CrossRef]

J. M. Wylie and J. E. Sipe, “Quantum electrodynamics near an
interface,” Phys. Rev. A 30, 1185–1193 (1984); “Quantum
electrodynamics near an interface, II,” Phys. Rev. A 32, 2030–2043 (1985); A. D. Mclachlan, “Three body dispersion
forces,” Mol. Phys. 6, 423–427 (1963); “Van der Waals
forces between an atom and a surface,” Mol.
Phys. 7, 381–388 (1963); G. S. Agarwal, “Quantum electrodynamics in the presence
of dielectrics and conductors: I. Electromagnetic-field response functions
and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: II. Theory of
dispersion forces,” Phys. Rev. A 11, 243–252 (1975); “Quantum
electrodynamics in the presence of dielectrics and conductors: III.
Relations among one-photon transition probabilities in stationary and
nonstationary fields, density of states, the field correlation functions and
surface-dependent response functions,” Phys.
Rev. A 11, 253–264 (1975).

[CrossRef]

S. Sachdev, “Atom in a damped
cavity,” Phys. Rev. A 29, 2627–2633 (1984).

[CrossRef]

R. Lang, M. O. Scully, and W. E. Lamb, “Why is the laser line so narrow? A
Theory of single-quasimode laser operation,” Phys. Rev. A 7, 1788–1797 (1973); J. C. Penaforte and B. Baseia, “Quantum theory of a one-dimensional
laser with output coupling: linear approximation,” Phys. Rev. A 30, 1401–1406 (1984).

[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, “Observation of structure resonances in
the fluorescence spectra from microspheres,” Phys. Rev. Lett. 44, 475–478 (1980); H.-M. Tzeng, M. B. Long, and R. K. Chang, “Size and shape variations of liquid
droplets deduced from morphology-dependent resonances in fluorescence
spectra,” in Particle Sizing and Spray
Analysis, N. Chigier and G. W. Stewart, eds., SPIE Proc. Vol. 573, 80–83 (1985); H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Evaporation and condensation rates of
liquid droplets deduced from structure resonances in the fluorescence
spectra,” Opt. Lett. 9, 273–275 (1984).

[CrossRef]
[PubMed]

D. Kleppner, “Inhibited spontaneous
emission,” Phys. Rev. Lett. 47, 233–236 (1981); R. G. Hulet, E. S. Hilfer, and D. Kleppner, “Inhibited spontaneous emission by a
Rydberg atom,” Phys. Rev. Lett. 55, 2137–2140 (1985).

[CrossRef]
[PubMed]

A. Einstein, “Zur Quantentheorie der
Strahlung,” Phys. Z. 18, 121–128 (1917); R. P. Feynman, R. B. Leighton, and M. Sands, eds., The Feynman Lectures on Physics (Addison-Wesley, Reading, Mass., 1963), Vol. I.

P. Ullersma, “An exactly solvable model for Brownian
motion I. Derivation of the Langevin equation,” Physica 32, 27–55 (1966); “An exactly
solvable model for Brownian motion II. Derivation of the
Fokker–Planck equation and the master
equation,” Physica 32, 56–73 (1966); “An exactly
solvable model for Brownian motion III. Motion of a heavy mass in a linear
chain,” Physica 32, 74–89 (1966); “An exactly
solvable model for Brownian motion IV. Susceptibility and Nyquist’s
theorem,” Physica 32, 90–96 (1966); R. P. Feynman and F. L. Vernon, “The theory of a general quantum system
interacting with a linear dissipative system,” Ann. Phys. 24, 118–173 (1963); P. S. Riseborough, P. Hanggi, and U. Weiss, “Exact results for a damped
quantum-mechanical harmonic oscillator,” Phys. Rev. A 31, 471–478 (1985); H. Grabert, U. Weiss, and P. Talkner, “Quantum theory of damped harmonic
oscillator,” Z. Phys. B 55, 87–94 (1984); A. O. Caldeira and A. J. Leggett, “Quantum tunnelling in a dissipative
system,” Ann. Phys. (N.Y.) 149, 374–456 (1983).

[CrossRef]
[PubMed]

M. J. Mehl and W. L. Schaich, “The Van der Waals interaction between
an atom and a solid,” Surf. Sci. 99, 553–569 (1980); G. Barton, “Frequency shifts near an interface:
inadequacies of two-level atomic models,” J.
Phys. B 7, 2134–2142 (1974).

[CrossRef]

See, e.g., A. Yariv, Introduction to Optical Electronics (Holt, Rinehart & Winston, New York, 1971).